Kvadrātvienādojumi. Pilnīgs un nepilnīgs kvadrātvienādojums. Nepilnīgu kvadrātvienādojumu definīcija un piemēri Izsakiet kvadrātvienādojumu ar saknēm

Mūsdienu sabiedrībā spēja darboties ar vienādojumiem, kas satur mainīgo kvadrātā, var būt noderīga daudzās darbības jomās un tiek plaši izmantota praksē zinātnes un tehnikas attīstībā. Par to var liecināt jūras un upju kuģu, lidmašīnu un raķešu konstrukcija. Ar šādu aprēķinu palīdzību tiek noteiktas dažādu ķermeņu, arī kosmosa objektu, kustības trajektorijas. Piemēri ar kvadrātvienādojumu atrisināšanu tiek izmantoti ne tikai ekonomikas prognozēšanā, ēku projektēšanā un būvniecībā, bet arī visparastākajos ikdienas apstākļos. Tie var būt nepieciešami kempingos, sporta pasākumos, veikalos iepērkoties un citās ļoti izplatītās situācijās.

Sadalīsim izteiksmi komponentfaktoros

Vienādojuma pakāpi nosaka mainīgā lieluma pakāpes maksimālā vērtība, ko satur dotā izteiksme. Ja tas ir vienāds ar 2, tad šādu vienādojumu sauc par kvadrātvienādojumu.

Ja runājam formulu valodā, tad šos izteicienus, lai arī kā tie izskatītos, vienmēr var novest līdz formai, kad izteiksmes kreisā puse sastāv no trim terminiem. Starp tiem: ax 2 (tas ir, mainīgais kvadrātā ar tā koeficientu), bx (nezināmais bez kvadrāta ar tā koeficientu) un c (brīvā sastāvdaļa, tas ir, parasts skaitlis). Tas viss labajā pusē ir vienāds ar 0. Gadījumā, ja šādam polinomam nav neviena no tā sastāvdaļām, izņemot asis 2, to sauc par nepilnu kvadrātvienādojumu. Vispirms jāapsver piemēri ar tādu uzdevumu risinājumu, kuros nav grūti atrast mainīgo lielumu vērtību.

Ja izteiksmē izskatās, ka tai ir divi vārdi izteiksmes labajā pusē, precīzāk ax 2 un bx, visvieglāk ir atrast x, iekavējot mainīgo. Tagad mūsu vienādojums izskatīsies šādi: x(ax+b). Turklāt kļūst acīmredzams, ka vai nu x=0, vai arī problēma tiek reducēta uz mainīgā atrašanu no šādas izteiksmes: ax+b=0. To nosaka viena no reizināšanas īpašībām. Noteikums saka, ka divu faktoru reizinājums ir 0 tikai tad, ja viens no tiem ir nulle.

Piemērs

x=0 vai 8x - 3 = 0

Rezultātā mēs iegūstam divas vienādojuma saknes: 0 un 0,375.

Šāda veida vienādojumi var aprakstīt ķermeņu kustību gravitācijas ietekmē, kas sāka kustēties no noteikta punkta, kas tiek uzskatīts par izcelsmi. Šeit matemātiskais apzīmējums iegūst šādu formu: y = v 0 t + gt 2 /2. Aizvietojot nepieciešamās vērtības, pielīdzinot labo pusi ar 0 un atrodot iespējamos nezināmos, jūs varat uzzināt laiku, kas pagājis no brīža, kad ķermenis paceļas, līdz brīdim, kad tas nokrīt, kā arī daudzus citus lielumus. Bet par to mēs runāsim vēlāk.

Izteiksmes faktorēšana

Iepriekš aprakstītais noteikums ļauj atrisināt šīs problēmas sarežģītākos gadījumos. Apsveriet piemērus ar šāda veida kvadrātvienādojumu atrisināšanu.

X2 — 33x + 200 = 0

Šis kvadrātveida trinomāls ir pabeigts. Pirmkārt, mēs pārveidojam izteiksmi un sadalām to faktoros. Ir divi no tiem: (x-8) un (x-25) = 0. Rezultātā mums ir divas saknes 8 un 25.

Piemēri ar kvadrātvienādojumu atrisināšanu 9. klasē ļauj šai metodei atrast mainīgo ne tikai otrās, bet pat trešās un ceturtās kārtas izteiksmēs.

Piemēram: 2x 3 + 2x 2 - 18x - 18 = 0. Faktorējot labo pusi faktoros ar mainīgo, tie ir trīs, tas ir, (x + 1), (x-3) un (x + 3).

Rezultātā kļūst skaidrs, ka šim vienādojumam ir trīs saknes: -3; - viens; 3.

Kvadrātsaknes izvilkšana

Vēl viens nepilnīga otrās kārtas vienādojuma gadījums ir izteiksme, kas uzrakstīta burtu valodā tā, ka labā puse ir uzbūvēta no komponentēm ax 2 un c. Šeit, lai iegūtu mainīgā lieluma vērtību, brīvais termins tiek pārnests uz labo pusi, un pēc tam kvadrātsakne tiek iegūta no abām vienādības pusēm. Jāatzīmē, ka šajā gadījumā vienādojumam parasti ir divas saknes. Vienīgie izņēmumi ir vienādības, kas vispār nesatur terminu c, kur mainīgais ir vienāds ar nulli, kā arī izteiksmju varianti, kad labā puse izrādās negatīva. Pēdējā gadījumā risinājumu vispār nav, jo iepriekš minētās darbības nevar veikt ar saknēm. Jāapsver šāda veida kvadrātvienādojumu risinājumu piemēri.

Šajā gadījumā vienādojuma saknes būs skaitļi -4 un 4.

Zemes platības aprēķins

Nepieciešamība pēc šāda veida aprēķiniem parādījās senos laikos, jo matemātikas attīstību tajos tālajos laikos lielā mērā noteica nepieciešamība ar vislielāko precizitāti noteikt zemes gabalu platības un perimetrus.

Jāapsver arī piemēri ar kvadrātvienādojumu atrisināšanu, kas sastādīti, pamatojoties uz šāda veida problēmām.

Tātad, pieņemsim, ka ir taisnstūrveida zemes gabals, kura garums ir par 16 metriem vairāk nekā platums. Ja ir zināms, ka tās platība ir 612 m 2, jums vajadzētu uzzināt vietnes garumu, platumu un perimetru.

Pievēršoties biznesam, vispirms mēs izveidosim nepieciešamo vienādojumu. Apzīmēsim posma platumu kā x, tad tā garums būs (x + 16). No rakstītā izriet, ka laukumu nosaka izteiksme x (x + 16), kas saskaņā ar mūsu uzdevuma nosacījumu ir 612. Tas nozīmē, ka x (x + 16) \u003d 612.

Pilnīgu kvadrātvienādojumu risinājumu, un šī izteiksme ir tieši tāda, nevar izdarīt tādā pašā veidā. Kāpēc? Lai gan tā kreisajā pusē joprojām ir divi faktori, to reizinājums nemaz nav vienāds ar 0, tāpēc šeit tiek izmantotas citas metodes.

Diskriminējošais

Vispirms veiksim nepieciešamās transformācijas, tad šīs izteiksmes izskats izskatīsies šādi: x 2 + 16x - 612 = 0. Tas nozīmē, ka esam saņēmuši izteiksmi iepriekš norādītajam standartam atbilstošā formā, kur a=1, b=16, c= -612.

Tas var būt piemērs kvadrātvienādojumu atrisināšanai, izmantojot diskriminantu. Šeit nepieciešamie aprēķini tiek veikti saskaņā ar shēmu: D = b 2 - 4ac. Šī palīgvērtība ne tikai ļauj atrast vajadzīgās vērtības otrās kārtas vienādojumā, bet arī nosaka iespējamo opciju skaitu. Gadījumā, ja D>0, tie ir divi; D=0 ir viena sakne. Gadījumā, ja D<0, никаких шансов для решения у уравнения вообще не имеется.

Par saknēm un to formulu

Mūsu gadījumā diskriminants ir: 256 - 4(-612) = 2704. Tas norāda, ka mūsu problēmai ir atbilde. Ja zināt, kvadrātvienādojumu risināšana ir jāturpina, izmantojot tālāk norādīto formulu. Tas ļauj aprēķināt saknes.

Tas nozīmē, ka uzrādītajā gadījumā: x 1 =18, x 2 =-34. Otrais variants šajā dilemmā nevar būt risinājums, jo zemes gabala lielumu nevar izmērīt negatīvās vērtībās, kas nozīmē, ka x (tas ir, zemes gabala platums) ir 18 m. No šejienes mēs aprēķinām garumu: 18+16=34, un perimetrs 2(34+18) = 104 (m 2).

Piemēri un uzdevumi

Turpinām kvadrātvienādojumu izpēti. Tālāk tiks sniegti vairāku no tiem piemēri un detalizēts risinājums.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Pārliksim visu uz vienlīdzības kreiso pusi, veiksim transformāciju, tas ir, iegūstam vienādojuma formu, ko parasti sauc par standarta, un pielīdzināsim nullei.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Pievienojot līdzīgus, mēs nosakām diskriminantu: D \u003d 49 - 48 \u003d 1. Tātad mūsu vienādojumam būs divas saknes. Mēs tos aprēķinām pēc iepriekš minētās formulas, kas nozīmē, ka pirmais no tiem būs vienāds ar 4/3, bet otrais - 1.

2) Tagad mēs atklāsim cita veida mīklas.

Noskaidrosim, vai šeit vispār ir saknes x 2 - 4x + 5 = 1? Lai iegūtu izsmeļošu atbildi, mēs ievietojam polinomu atbilstošā pazīstamajā formā un aprēķinām diskriminantu. Šajā piemērā kvadrātvienādojums nav jāatrisina, jo problēmas būtība nepavisam nav tajā. Šajā gadījumā D \u003d 16 - 20 \u003d -4, kas nozīmē, ka tiešām nav sakņu.

Vietas teorēma

Kvadrātvienādojumus ir ērti atrisināt, izmantojot iepriekš minētās formulas un diskriminantu, kad kvadrātsakne tiek iegūta no pēdējās vērtības. Bet tas ne vienmēr notiek. Tomēr šajā gadījumā ir daudz veidu, kā iegūt mainīgo vērtības. Piemērs: kvadrātvienādojumu atrisināšana, izmantojot Vietas teorēmu. Tas ir nosaukts vīrieša vārdā, kurš dzīvoja 16. gadsimta Francijā un kuram bija spoža karjera, pateicoties viņa matemātiskajam talantam un sakariem galmā. Viņa portretu var redzēt rakstā.

Modelis, ko slavenais francūzis pamanīja, bija šāds. Viņš pierādīja, ka vienādojuma sakņu summa ir vienāda ar -p=b/a, un to reizinājums atbilst q=c/a.

Tagad apskatīsim konkrētus uzdevumus.

3x2 + 21x - 54 = 0

Vienkāršības labad pārveidosim izteiksmi:

x 2 + 7x - 18 = 0

Izmantojot Vieta teorēmu, tas mums iegūs sekojošo: sakņu summa ir -7, un to reizinājums ir -18. No šejienes mēs iegūstam, ka vienādojuma saknes ir skaitļi -9 un 2. Pēc pārbaudes mēs pārliecināsimies, vai šīs mainīgo vērtības patiešām iekļaujas izteiksmē.

Parabolas grafiks un vienādojums

Kvadrātfunkcijas un kvadrātvienādojumu jēdzieni ir cieši saistīti. Piemēri tam jau ir sniegti iepriekš. Tagad apskatīsim dažas matemātiskās mīklas nedaudz sīkāk. Jebkuru aprakstītā tipa vienādojumu var attēlot vizuāli. Šādu atkarību, kas novilkta grafa formā, sauc par parabolu. Tās dažādie veidi ir parādīti zemāk esošajā attēlā.

Jebkurai parabolai ir virsotne, tas ir, punkts, no kura iziet tās zari. Ja a>0, tie sasniedz augstumu līdz bezgalībai, un, kad a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Funkciju vizuālie attēlojumi palīdz atrisināt jebkurus vienādojumus, ieskaitot kvadrātiskos. Šo metodi sauc par grafiku. Un mainīgā x vērtība ir abscisu koordinātas punktos, kur grafika līnija krustojas ar 0x. Virsotnes koordinātas var atrast pēc tikko dotās formulas x 0 = -b / 2a. Un, aizvietojot iegūto vērtību sākotnējā funkcijas vienādojumā, jūs varat uzzināt y 0, tas ir, parabolas virsotnes otro koordinātu, kas pieder y asij.

Parabolas zaru krustpunkts ar abscisu asi

Ir daudz piemēru ar kvadrātvienādojumu atrisināšanu, taču ir arī vispārīgi modeļi. Apsvērsim tos. Ir skaidrs, ka grafika krustošanās ar 0x asi pie a>0 ir iespējama tikai tad, ja y 0 iegūst negatīvas vērtības. Un par a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Citādi D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

No parabolas grafika var noteikt arī saknes. Arī otrādi ir taisnība. Tas ir, ja nav viegli iegūt kvadrātiskās funkcijas vizuālu attēlojumu, izteiksmes labo pusi varat pielīdzināt 0 un atrisināt iegūto vienādojumu. Un, zinot krustošanās punktus ar 0x asi, ir vieglāk uzzīmēt.

No vēstures

Ar vienādojumu palīdzību, kas satur kvadrātveida mainīgo, senos laikos ne tikai veica matemātiskus aprēķinus un noteica ģeometrisko formu laukumu. Tādi aprēķini seniem cilvēkiem bija nepieciešami grandioziem atklājumiem fizikas un astronomijas jomā, kā arī astroloģisko prognožu veidošanai.

Kā norāda mūsdienu zinātnieki, Babilonas iedzīvotāji bija vieni no pirmajiem, kas atrisināja kvadrātvienādojumus. Tas notika četrus gadsimtus pirms mūsu ēras parādīšanās. Protams, viņu aprēķini būtiski atšķīrās no pašlaik pieņemtajiem un izrādījās daudz primitīvāki. Piemēram, Mezopotāmijas matemātiķiem nebija ne jausmas par negatīvu skaitļu esamību. Viņiem nebija pazīstami arī citi to smalkumi, kas zināmi jebkuram mūsu laika studentam.

Iespējams, pat agrāk nekā Babilonas zinātnieki, Indijas gudrais Bodhajama ķērās pie kvadrātvienādojumu atrisināšanas. Tas notika apmēram astoņus gadsimtus pirms Kristus laikmeta parādīšanās. Tiesa, otrās kārtas vienādojumi, viņa sniegtās risināšanas metodes, bija visvienkāršākie. Bez viņa senatnē par līdzīgiem jautājumiem interesēja arī ķīniešu matemātiķi. Eiropā kvadrātvienādojumus sāka risināt tikai 13. gadsimta sākumā, bet vēlāk tos savos darbos izmantoja tādi izcili zinātnieki kā Ņūtons, Dekarts un daudzi citi.

Kvadrātvienādojuma sakņu formulas. Tiek aplūkoti reālu, daudzkārtēju un sarežģītu sakņu gadījumi. Kvadrātveida trinoma faktorizācija. Ģeometriskā interpretācija. Sakņu noteikšanas un faktorizācijas piemēri.

Saturs

Skatīt arī: Kvadrātvienādojumu risināšana tiešsaistē

Pamatformulas

Apsveriet kvadrātvienādojumu:
(1) .
Kvadrātvienādojuma saknes(1) nosaka pēc formulām:
; .
Šīs formulas var apvienot šādi:
.
Ja ir zināmas kvadrātvienādojuma saknes, tad otrās pakāpes polinomu var attēlot kā faktoru reizinājumu (faktorizēts):
.

Turklāt mēs pieņemam, ka tie ir reāli skaitļi.
Apsveriet kvadrātvienādojuma diskriminants:
.
Ja diskriminants ir pozitīvs, kvadrātvienādojumam (1) ir divas dažādas reālās saknes:
; .
Tad kvadrātveida trinoma faktorizācijai ir šāda forma:
.
Ja diskriminants ir nulle, tad kvadrātvienādojumam (1) ir divas vairākas (vienādas) reālās saknes:
.
Faktorizācija:
.
Ja diskriminants ir negatīvs, kvadrātvienādojumam (1) ir divas sarežģītas konjugāta saknes:
;
.
Šeit ir iedomātā vienība, ;
un ir sakņu reālās un iedomātās daļas:
; .
Tad

.

Grafiskā interpretācija

Ja grafiski attēlojam funkciju
,
kas ir parabola, tad grafika krustošanās punkti ar asi būs vienādojuma saknes
.
Kad , grafiks šķērso abscisu asi (asi) divos punktos ().
Kad , grafiks pieskaras x asij vienā punktā ().
Kad , grafiks nešķērso x asi ().

Noderīgas formulas, kas saistītas ar kvadrātvienādojumu

(f.1) ;
(f.2) ;
(f.3) .

Kvadrātvienādojuma sakņu formulas atvasināšana

Veicam transformācijas un pielietojam formulas (f.1) un (f.3):




,
kur
; .

Tātad otrās pakāpes polinoma formulu ieguvām šādā formā:
.
No tā var redzēt, ka vienādojums

veikta plkst
un .
Tas ir, un ir kvadrātvienādojuma saknes
.

Kvadrātvienādojuma sakņu noteikšanas piemēri

1. piemērs


(1.1) .


.
Salīdzinot ar mūsu vienādojumu (1.1), mēs atrodam koeficientu vērtības:
.
Diskriminanta atrašana:
.
Tā kā diskriminants ir pozitīvs, vienādojumam ir divas reālas saknes:
;
;
.

No šejienes mēs iegūstam kvadrātveida trinoma sadalījumu faktoros:

.

Funkcijas y = grafiks 2 x 2 + 7 x + 3šķērso x asi divos punktos.

Uzzīmēsim funkciju
.
Šīs funkcijas grafiks ir parabola. Tas šķērso x asi (asi) divos punktos:
un .
Šie punkti ir sākotnējā vienādojuma (1.1) saknes.

;
;
.

2. piemērs

Atrodiet kvadrātvienādojuma saknes:
(2.1) .

Kvadrātvienādojumu rakstām vispārīgā formā:
.
Salīdzinot ar sākotnējo vienādojumu (2.1), mēs atrodam koeficientu vērtības:
.
Diskriminanta atrašana:
.
Tā kā diskriminants ir nulle, vienādojumam ir divas vairākas (vienādas) saknes:
;
.

Tad trinoma faktorizācijai ir šāda forma:
.

Funkcijas y = x grafiks 2 - 4 x + 4 pieskaras x asij vienā punktā.

Uzzīmēsim funkciju
.
Šīs funkcijas grafiks ir parabola. Tas pieskaras x asij (asij) vienā punktā:
.
Šis punkts ir sākotnējā vienādojuma (2.1) sakne. Tā kā šī sakne tiek aprēķināta divreiz:
,
tad šādu sakni sauc par daudzkārtni. Tas ir, viņi uzskata, ka ir divas vienādas saknes:
.

;
.

3. piemērs

Atrodiet kvadrātvienādojuma saknes:
(3.1) .

Kvadrātvienādojumu rakstām vispārīgā formā:
(1) .
Pārrakstīsim sākotnējo vienādojumu (3.1):
.
Salīdzinot ar (1), mēs atrodam koeficientu vērtības:
.
Diskriminanta atrašana:
.
Diskriminants ir negatīvs, . Tāpēc īstu sakņu nav.

Jūs varat atrast sarežģītas saknes:
;
;
.

Tad


.

Funkcijas grafiks nešķērso x asi. Īstu sakņu nav.

Uzzīmēsim funkciju
.
Šīs funkcijas grafiks ir parabola. Tas nešķērso abscisu (asi). Tāpēc īstu sakņu nav.

Īstu sakņu nav. Sarežģītas saknes:
;
;
.

Skatīt arī:

Šī tēma sākumā var šķist sarežģīta daudzo ne pārāk vienkāršo formulu dēļ. Pašos kvadrātvienādojumos ir ne tikai gari ieraksti, bet arī saknes tiek atrastas, izmantojot diskriminantu. Pavisam ir trīs jaunas formulas. Nav ļoti viegli atcerēties. Tas ir iespējams tikai pēc biežas šādu vienādojumu atrisināšanas. Tad visas formulas pašas atcerēsies.

Kvadrātvienādojuma vispārīgs skats

Šeit tiek piedāvāts to skaidrais apzīmējums, kad vispirms tiek uzrakstīts lielākais grāds un pēc tam dilstošā secībā. Bieži vien ir situācijas, kad termini atšķiras. Tad labāk ir pārrakstīt vienādojumu mainīgā lieluma pakāpes dilstošā secībā.

Ieviesīsim notāciju. Tie ir parādīti zemāk esošajā tabulā.

Ja mēs pieņemam šos apzīmējumus, visi kvadrātvienādojumi tiek reducēti uz šādu apzīmējumu.

Turklāt koeficients a ≠ 0. Apzīmēsim šo formulu ar skaitli viens.

Kad vienādojums ir dots, nav skaidrs, cik sakņu būs atbildē. Jo vienmēr ir iespējama viena no trim iespējām:

  • šķīdumam būs divas saknes;
  • atbilde būs viens skaitlis;
  • Vienādojumam vispār nav sakņu.

Un, lai gan lēmums netiek pieņemts līdz galam, ir grūti saprast, kura no iespējām konkrētajā gadījumā izkritīs.

Kvadrātvienādojumu ierakstu veidi

Uzdevumiem var būt dažādi ieraksti. Tie ne vienmēr izskatīsies pēc kvadrātvienādojuma vispārējās formulas. Dažreiz tai pietrūks daži termini. Tas, kas tika rakstīts iepriekš, ir pilnīgs vienādojums. Ja noņemat tajā otro vai trešo terminu, jūs iegūstat kaut ko citu. Šos ierakstus sauc arī par kvadrātvienādojumiem, tikai nepilnīgiem.

Turklāt var pazust tikai tie termini, kuriem koeficienti "b" un "c". Skaitlis "a" nekādā gadījumā nevar būt vienāds ar nulli. Jo šajā gadījumā formula pārvēršas par lineāru vienādojumu. Formulas vienādojumu nepilnīgai formai būs šādas:

Tātad ir tikai divi veidi, papildus pilnīgajiem, ir arī nepilnīgi kvadrātvienādojumi. Lai pirmā formula ir skaitlis divi, bet otrais skaitlis trīs.

Diskriminants un sakņu skaita atkarība no tā vērtības

Šim skaitlim ir jābūt zināmam, lai aprēķinātu vienādojuma saknes. To vienmēr var aprēķināt neatkarīgi no kvadrātvienādojuma formulas. Lai aprēķinātu diskriminantu, jāizmanto zemāk uzrakstītā vienādība, kurai būs cipars četri.

Pēc koeficientu vērtību aizstāšanas šajā formulā varat iegūt skaitļus ar dažādām zīmēm. Ja atbilde ir jā, tad vienādojuma atbilde būs divas dažādas saknes. Ja skaitlis ir negatīvs, kvadrātvienādojuma saknes nebūs. Ja tas ir vienāds ar nulli, atbilde būs viens.

Kā tiek atrisināts pilns kvadrātvienādojums?

Faktiski šī jautājuma izskatīšana jau ir sākusies. Jo vispirms ir jāatrod diskriminants. Pēc tam, kad ir noskaidrots, ka kvadrātvienādojumam ir saknes un to skaits ir zināms, jums ir jāizmanto mainīgo lielumu formulas. Ja ir divas saknes, tad jums ir jāpiemēro šāda formula.

Tā kā tajā ir zīme “±”, būs divas vērtības. Izteiciens zem kvadrātsaknes zīmes ir diskriminants. Tāpēc formulu var pārrakstīt citā veidā.

Piektā formula. No tā paša ieraksta var redzēt, ka, ja diskriminants ir nulle, tad abām saknēm būs vienādas vērtības.

Ja kvadrātvienādojumu risinājums vēl nav izstrādāts, tad pirms diskriminējošās un mainīgās formulas piemērošanas labāk ir pierakstīt visu koeficientu vērtības. Vēlāk šis brīdis nesagādās grūtības. Taču pašā sākumā ir apjukums.

Kā tiek atrisināts nepilnīgs kvadrātvienādojums?

Šeit viss ir daudz vienkāršāk. Pat papildu formulas nav vajadzīgas. Un nevajadzēs tos, kas jau ir rakstīti diskriminējošajam un nezināmajam.

Pirmkārt, apsveriet nepilnīgo vienādojumu numur divi. Šajā vienādībā ir paredzēts izņemt nezināmo vērtību no iekavas un atrisināt lineāro vienādojumu, kas paliks iekavās. Atbildei būs divas saknes. Pirmais obligāti ir vienāds ar nulli, jo ir faktors, kas sastāv no paša mainīgā lieluma. Otro iegūst, atrisinot lineāru vienādojumu.

Nepabeigtais vienādojums ar numuru trīs tiek atrisināts, pārnesot skaitli no vienādojuma kreisās puses uz labo. Tad jums ir jādala ar koeficientu nezināmā priekšā. Atliek tikai izvilkt kvadrātsakni un neaizmirstiet to divreiz pierakstīt ar pretējām zīmēm.

Tālāk ir norādītas dažas darbības, kas palīdz jums uzzināt, kā atrisināt visu veidu vienādības, kas pārvēršas kvadrātvienādojumos. Tie palīdzēs skolēnam izvairīties no kļūdām neuzmanības dēļ. Šīs nepilnības ir slikto atzīmju cēlonis, pētot plašo tēmu "Kvadrātvienādojumi (8. klase)". Pēc tam šīs darbības nebūs pastāvīgi jāveic. Jo būs stabils ieradums.

  • Vispirms jums ir jāuzraksta vienādojums standarta formā. Tas ir, vispirms termins ar lielāko mainīgā pakāpi, un pēc tam - bez pakāpes un pēdējais - tikai skaitlis.
  • Ja pirms koeficienta "a" parādās mīnuss, iesācējam tas var sarežģīt kvadrātvienādojumu pētīšanas darbu. Labāk no tā atbrīvoties. Šim nolūkam visa vienlīdzība jāreizina ar "-1". Tas nozīmē, ka visi termini mainīs zīmi uz pretējo.
  • Tādā pašā veidā ieteicams atbrīvoties no frakcijām. Vienkārši reiziniet vienādojumu ar atbilstošo koeficientu, lai saucēji tiktu izslēgti.

Piemēri

Ir nepieciešams atrisināt šādus kvadrātvienādojumus:

x 2 - 7x \u003d 0;

15 - 2x - x 2 \u003d 0;

x 2 + 8 + 3x = 0;

12x + x 2 + 36 = 0;

(x+1) 2 + x + 1 = (x+1) (x+2).

Pirmais vienādojums: x 2 - 7x \u003d 0. Tas ir nepilnīgs, tāpēc tas ir atrisināts, kā aprakstīts formulai numur divi.

Pēc iekavēšanas izrādās: x (x - 7) \u003d 0.

Pirmā sakne iegūst vērtību: x 1 \u003d 0. Otrā tiks atrasta no lineārā vienādojuma: x - 7 \u003d 0. Ir viegli redzēt, ka x 2 \u003d 7.

Otrais vienādojums: 5x2 + 30 = 0. Atkal nepilnīgs. Tikai tas tiek atrisināts, kā aprakstīts trešajā formulā.

Pēc 30 pārsūtīšanas uz vienādojuma labo pusi: 5x 2 = 30. Tagad jādala ar 5. Izrādās: x 2 = 6. Atbildes būs skaitļi: x 1 = √6, x 2 = - √ 6.

Trešais vienādojums: 15 - 2x - x 2 \u003d 0. Šeit un zemāk kvadrātvienādojumu atrisināšana sāksies, pārrakstot tos standarta formā: - x 2 - 2x + 15 \u003d 0. Tagad ir pienācis laiks izmantot otro noderīgs padoms un reiziniet visu ar mīnus viens . Izrādās x 2 + 2x - 15 \u003d 0. Saskaņā ar ceturto formulu jums jāaprēķina diskriminants: D \u003d 2 2 - 4 * (- 15) \u003d 4 + 60 \u003d 64. Tas ir pozitīvs skaitlis. No iepriekš teiktā izrādās, ka vienādojumam ir divas saknes. Tie jāaprēķina pēc piektās formulas. Saskaņā ar to izrādās, ka x \u003d (-2 ± √64) / 2 \u003d (-2 ± 8) / 2. Tad x 1 \u003d 3, x 2 \u003d - 5.

Ceturtais vienādojums x 2 + 8 + 3x \u003d 0 tiek pārveidots par šādu: x 2 + 3x + 8 \u003d 0. Tā diskriminants ir vienāds ar šo vērtību: -23. Tā kā šis skaitlis ir negatīvs, atbilde uz šo uzdevumu būs šāds ieraksts: "Nav sakņu."

Piektais vienādojums 12x + x 2 + 36 = 0 jāpārraksta šādi: x 2 + 12x + 36 = 0. Pēc diskriminanta formulas piemērošanas iegūst skaitli nulle. Tas nozīmē, ka tam būs viena sakne, proti: x \u003d -12 / (2 * 1) \u003d -6.

Sestais vienādojums (x + 1) 2 + x + 1 = (x + 1) (x + 2) prasa transformācijas, kas sastāv no tā, ka pirms iekavu atvēršanas ir jāienes līdzīgi termini. Pirmā vietā būs šāda izteiksme: x 2 + 2x + 1. Pēc vienādības parādīsies šāds ieraksts: x 2 + 3x + 2. Pēc līdzīgu vārdu saskaitīšanas vienādojums būs šādā formā: x 2 - x \u003d 0. Tas ir kļuvis nepilnīgs . Līdzīgs tam jau ir uzskatīts par nedaudz augstāku. Tā saknes būs skaitļi 0 un 1.

”, tas ir, pirmās pakāpes vienādojumi. Šajā nodarbībā mēs izpētīsim kas ir kvadrātvienādojums un kā to atrisināt.

Kas ir kvadrātvienādojums

Svarīgs!

Vienādojuma pakāpi nosaka pēc augstākās pakāpes, kādā atrodas nezināmais.

Ja maksimālā pakāpe, līdz kurai nezināmais ir, ir “2”, tad jums ir kvadrātvienādojums.

Kvadrātvienādojumu piemēri

  • 5x2 - 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x2 + 0,25x = 0
  • x 2–8 = 0

Svarīgs! Kvadrātvienādojuma vispārējā forma izskatās šādi:

A x 2 + b x + c = 0

"a", "b" un "c" - dotie skaitļi.
  • "a" - pirmais jeb vecākais koeficients;
  • "b" - otrais koeficients;
  • "c" ir bezmaksas dalībnieks.

Lai atrastu "a", "b" un "c", jums ir jāsalīdzina jūsu vienādojums ar kvadrātvienādojuma vispārējo formu "ax 2 + bx + c \u003d 0".

Praktizēsim koeficientu "a", "b" un "c" noteikšanu kvadrātvienādojumos.

5x2 - 14x + 17 = 0 −7x2 − 13x + 8 = 0 −x 2 + x +
Vienādojums Likmes
  • a=5
  • b = –14
  • c = 17
  • a = –7
  • b = –13
  • c = 8
1
3
= 0
  • a = –1
  • b = 1
  • c =
    1
    3
x2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • c = 0
x 2–8 = 0
  • a = 1
  • b = 0
  • c = –8

Kā atrisināt kvadrātvienādojumus

Atšķirībā no lineārajiem vienādojumiem kvadrātvienādojumu risināšanai tiek izmantots īpašs vienādojums. formula sakņu atrašanai.

Atcerieties!

Lai atrisinātu kvadrātvienādojumu, jums ir nepieciešams:

  • novietojiet kvadrātvienādojumu vispārējā formā "ax 2 + bx + c \u003d 0". Tas ir, tikai "0" jāpaliek labajā pusē;
  • saknēm izmantojiet formulu:

Izmantosim piemēru, lai noskaidrotu, kā pielietot formulu kvadrātvienādojuma sakņu atrašanai. Atrisināsim kvadrātvienādojumu.

X 2 - 3x - 4 = 0


Vienādojums "x 2 - 3x - 4 = 0" jau ir reducēts uz vispārīgo formu "ax 2 + bx + c = 0", un tam nav nepieciešami papildu vienkāršojumi. Lai to atrisinātu, mums tikai jāpiesakās formula kvadrātvienādojuma sakņu atrašanai.

Definēsim koeficientus "a", "b" un "c" šim vienādojumam.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

Ar tās palīdzību tiek atrisināts jebkurš kvadrātvienādojums.

Formulā "x 1; 2 \u003d" saknes izteiksme bieži tiek aizstāta
"b 2 - 4ac" uz burtu "D" un tiek saukts par diskriminējošu. Diskriminanta jēdziens sīkāk aplūkots nodarbībā "Kas ir diskriminants".

Apsveriet citu kvadrātvienādojuma piemēru.

x 2 + 9 + x = 7x

Šajā formā ir diezgan grūti noteikt koeficientus "a", "b" un "c". Vispirms izveidosim vienādojumu vispārējā formā "ax 2 + bx + c \u003d 0".

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x2 + 9 - 6x = 0
x 2 - 6x + 9 = 0

Tagad jūs varat izmantot formulu saknēm.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x=

6
2

x=3
Atbilde: x = 3

Ir reizes, kad kvadrātvienādojumos nav sakņu. Šī situācija rodas, ja formulā zem saknes parādās negatīvs skaitlis.

Kvadrātvienādojumi tiek pētīti 8. klasē, tāpēc šeit nav nekā sarežģīta. Spēja tos atrisināt ir būtiska.

Kvadrātvienādojums ir vienādojums ar formu ax 2 + bx + c = 0, kur koeficienti a , b un c ir patvaļīgi skaitļi un a ≠ 0.

Pirms konkrētu risinājumu metožu izpētes mēs atzīmējam, ka visus kvadrātvienādojumus var iedalīt trīs klasēs:

  1. nav sakņu;
  2. Viņiem ir tieši viena sakne;
  3. Viņiem ir divas dažādas saknes.

Šī ir būtiska atšķirība starp kvadrātvienādojumiem un lineārajiem vienādojumiem, kur sakne vienmēr pastāv un ir unikāla. Kā noteikt, cik sakņu ir vienādojumam? Tam ir brīnišķīga lieta - diskriminējošs.

Diskriminējošais

Dots kvadrātvienādojums ax 2 + bx + c = 0. Tad diskriminants ir vienkārši skaitlis D = b 2 − 4ac .

Šī formula ir jāzina no galvas. Tagad nav svarīgi, no kurienes tas nāk. Vēl viena lieta ir svarīga: pēc diskriminanta zīmes jūs varat noteikt, cik sakņu ir kvadrātvienādojumam. Proti:

  1. Ja D< 0, корней нет;
  2. Ja D = 0, ir tieši viena sakne;
  3. Ja D > 0, būs divas saknes.

Lūdzu, ņemiet vērā: diskriminants norāda sakņu skaitu, nevis to pazīmes, kā nez kāpēc daudzi domā. Apskatiet piemērus un paši visu sapratīsiet:

Uzdevums. Cik sakņu ir kvadrātvienādojumiem:

  1. x 2 - 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x 2 - 6x + 9 = 0.

Mēs rakstām pirmā vienādojuma koeficientus un atrodam diskriminantu:
a = 1, b = -8, c = 12;
D = (-8) 2 - 4 1 12 = 64 - 48 = 16

Tātad diskriminants ir pozitīvs, tāpēc vienādojumam ir divas dažādas saknes. Mēs analizējam otro vienādojumu tādā pašā veidā:
a = 5; b = 3; c = 7;
D \u003d 3 2 - 4 5 7 \u003d 9 - 140 \u003d -131.

Diskriminants ir negatīvs, nav sakņu. Pēdējais vienādojums paliek:
a = 1; b = -6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Diskriminants ir vienāds ar nulli - sakne būs viens.

Ņemiet vērā, ka katram vienādojumam ir izrakstīti koeficienti. Jā, tas ir garš, jā, tas ir nogurdinoši, taču jūs nesajauksit izredzes un nepieļausiet stulbas kļūdas. Izvēlieties pats: ātrums vai kvalitāte.

Starp citu, ja jūs "piepildīsit roku", pēc kāda laika jums vairs nebūs jāraksta visi koeficienti. Tādas operācijas veiksi galvā. Lielākā daļa cilvēku to sāk darīt kaut kur pēc 50-70 atrisinātiem vienādojumiem - kopumā ne tik daudz.

Kvadrātvienādojuma saknes

Tagad pāriesim pie risinājuma. Ja diskriminants D > 0, saknes var atrast, izmantojot formulas:

Kvadrātvienādojuma sakņu pamatformula

Ja D = 0, varat izmantot jebkuru no šīm formulām - jūs saņemat to pašu skaitli, kas būs atbilde. Visbeidzot, ja D< 0, корней нет — ничего считать не надо.

  1. x 2 - 2x - 3 = 0;
  2. 15 - 2x - x2 = 0;
  3. x2 + 12x + 36 = 0.

Pirmais vienādojums:
x 2 - 2x - 3 = 0 ⇒ a = 1; b = –2; c = -3;
D = (-2) 2 - 4 1 (-3) = 16.

D > 0 ⇒ vienādojumam ir divas saknes. Atradīsim tos:

Otrais vienādojums:
15 − 2x − x 2 = 0 ⇒ a = −1; b = –2; c = 15;
D = (-2) 2 - 4 (-1) 15 = 64.

D > 0 ⇒ vienādojumam atkal ir divas saknes. Atradīsim viņus

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(līdzināt)\]

Visbeidzot, trešais vienādojums:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 - 4 1 36 = 0.

D = 0 ⇒ vienādojumam ir viena sakne. Var izmantot jebkuru formulu. Piemēram, pirmais:

Kā redzat no piemēriem, viss ir ļoti vienkārši. Ja zināsi formulas un pratīsi skaitīt, tad problēmu nebūs. Visbiežāk kļūdas rodas, ja formulā tiek aizstāti negatīvi koeficienti. Šeit atkal palīdzēs iepriekš aprakstītā tehnika: aplūkojiet formulu burtiski, krāsojiet katru soli - un ļoti drīz atbrīvojieties no kļūdām.

Nepilnīgi kvadrātvienādojumi

Gadās, ka kvadrātvienādojums nedaudz atšķiras no definīcijā norādītā. Piemēram:

  1. x2 + 9x = 0;
  2. x2–16 = 0.

Ir viegli redzēt, ka šajos vienādojumos trūkst viena no terminiem. Šādus kvadrātvienādojumus ir pat vieglāk atrisināt nekā standarta vienādojumus: tiem pat nav jāaprēķina diskriminants. Tātad, ieviesīsim jaunu koncepciju:

Vienādojumu ax 2 + bx + c = 0 sauc par nepilnīgu kvadrātvienādojumu, ja b = 0 vai c = 0, t.i. mainīgā x jeb brīvā elementa koeficients ir vienāds ar nulli.

Protams, ir iespējams ļoti sarežģīts gadījums, kad abi šie koeficienti ir vienādi ar nulli: b \u003d c \u003d 0. Šajā gadījumā vienādojuma forma ir ax 2 \u003d 0. Acīmredzot šādam vienādojumam ir viens sakne: x \u003d 0.

Apskatīsim citus gadījumus. Ļaujiet b \u003d 0, tad mēs iegūstam nepilnīgu kvadrātvienādojumu formā ax 2 + c \u003d 0. Nedaudz pārveidosim to:

Tā kā aritmētiskā kvadrātsakne pastāv tikai no nenegatīva skaitļa, pēdējai vienādībai ir jēga tikai tad, ja (-c / a ) ≥ 0. Secinājums:

  1. Ja nepilnīgs kvadrātvienādojums formā ax 2 + c = 0 apmierina nevienādību (−c / a ) ≥ 0, būs divas saknes. Formula ir dota iepriekš;
  2. Ja (-c / a )< 0, корней нет.

Kā redzat, diskriminants nebija vajadzīgs - nepilnīgos kvadrātvienādojumos sarežģītu aprēķinu vispār nav. Patiesībā pat nav jāatceras nevienādība (−c / a ) ≥ 0. Pietiek izteikt x 2 vērtību un redzēt, kas atrodas vienādības zīmes otrā pusē. Ja ir pozitīvs skaitlis, būs divas saknes. Ja negatīvs, tad vispār nebūs sakņu.

Tagad aplūkosim vienādojumus formā ax 2 + bx = 0, kuros brīvais elements ir vienāds ar nulli. Šeit viss ir vienkārši: vienmēr būs divas saknes. Pietiek ar polinomu faktorizēt:

Kopējā faktora izņemšana no kronšteina

Produkts ir vienāds ar nulli, ja vismaz viens no faktoriem ir vienāds ar nulli. Lūk, no kurienes nāk saknes. Noslēgumā mēs analizēsim vairākus no šiem vienādojumiem:

Uzdevums. Atrisiniet kvadrātvienādojumus:

  1. x2 – 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 - 9 = 0.

x 2 - 7x = 0 ⇒ x (x - 7) = 0 ⇒ x 1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = -30 ⇒ x2 = -6. Nav sakņu, jo kvadrāts nevar būt vienāds ar negatīvu skaitli.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 \u003d -1,5.

Līdzīgas ziņas