Реакція вуглеводнів таблиці. Характерні хімічні властивості вуглеводнів. Механізми реакцій. Будова та властивості вуглеводнів

Хімічні властивості алканів

Алканами (парафінами) називають нециклічні вуглеводні, у молекулах яких атоми вуглецю з'єднані лише одинарними зв'язками. Тобто в молекулах алканів відсутні кратні - подвійні або потрійні зв'язки. Фактично алкани є вуглеводнями, що містять максимально можливу кількість атомів водню, через що їх називають граничним (насиченими).

Зважаючи на насиченість, алкани не можуть вступати в реакції приєднання.

Оскільки атоми вуглецю та водню мають досить близькі електронегативності, це призводить до того, що зв'язки С-Н у їх молекулах вкрай малополярні. У зв'язку з цим для алканів більш характерні реакції, що протікають механізмом радикального заміщення, що позначається символом S R .

1. Реакції заміщення

У реакціях даного типу відбувається розрив зв'язків вуглець-водень

RH + XY → RX + HY

Галогенування

Алкани реагують з галогенами (хлором та бромом) під дією ультрафіолетового світла або при сильному нагріванні. При цьому утворюється суміш галогенпохідних з різним ступенем заміщення атомів водню - моно-, ди-три-і т.д. галогенозаміщених алканів.

На прикладі метану це виглядає так:

Змінюючи співвідношення галоген/метан в реакційній суміші можна домогтися того, що у складі продуктів переважатиме якесь конкретне галогенпохідне метану.

Механізм реакції

Розберемо механізм реакції вільнорадикального заміщення на прикладі взаємодії метану та хлору. Він складається із трьох стадій:

  1. ініціювання (або зародження ланцюга) - процес утворення вільних радикалів під впливом енергії ззовні – опромінення УФ-світлом або нагрівання. На цій стадії молекула хлору зазнає гомолітичного розриву зв'язку Cl-Cl з утворенням вільних радикалів:

Вільними радикалами, як можна бачити з малюнка вище, називають атоми або групи атомів з одним або декількома неспареними електронами (Сl, Н, СН3, СН2 і т.д.);

2. Розвиток ланцюга

Ця стадія полягає у взаємодії активних вільних радикалів із неактивними молекулами. У цьому утворюються нові радикали. Зокрема, при дії радикалів хлору на молекули алкану утворюється алкільний радикал та хлороводень. У свою чергу, алкільний радикал, стикаючись з молекулами хлору, утворює хлорпохідне та новий радикал хлору:

3) Обрив (загибель) ланцюга:

Відбувається внаслідок рекомбінації двох радикалів один з одним у неактивні молекули:

2. Реакції окиснення

У звичайних умовах алкани інертні щодо таких сильних окислювачів, як концентрована сірчана та азотна кислоти, перманганат і дихромат калію (КMnО 4 , К 2 Cr 2 Про 7).

Горіння в кисні

А) повне згоряння при надлишку кисню. Приводить до утворення вуглекислого газу та води:

CH 4 + 2O 2 = CO 2 + 2H 2 O

Б) неповне згоряння при нестачі кисню:

2CH 4 + 3O 2 = 2CO + 4H 2 O

CH 4 + O 2 = C + 2H 2 O

Каталітичне окиснення киснем

В результаті нагрівання алканів з киснем (~200 о С) у присутності каталізаторів, з них може бути отримана велика різноманітність органічних продуктів: альдегіди, кетони, спирти, карбонові кислоти.

Наприклад, метан, залежно від природи каталізатора, може бути окислений у метиловий спирт, формальдегід або мурашину кислоту:

3. Термічні перетворення алканів

Крекінг

Крекінг (від англ. to crack - рвати) - це хімічний процес, що протікає при високій температурі, в результаті якого відбувається розрив вуглецевого скелета молекул алканів з утворенням молекул алкенів і алканів з володіють меншими молекулярними масами в порівнянні з вихідними алканами. Наприклад:

CH 3 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 3 → CH 3 -CH 2 -CH 2 -CH 3 + CH 3 -CH=CH 2

Крекінг буває термічний та каталітичний. Для здійснення каталітичного крекінгу завдяки використанню каталізаторів використовують помітно менші температури порівняно з термічним крекінгом.

Дегідрування

Відщеплення водню відбувається внаслідок розриву зв'язків С-Н; здійснюється у присутності каталізаторів за підвищених температур. При дегідруванні метану утворюється ацетилен:

2CH 4 → C 2 H 2 + 3H 2

Нагрівання метану до 1200 ° С призводить до його розкладання на прості речовини:

СН 4 → С + 2Н 2

При дегідруванні інших алканів утворюються алкени:

C 2 H 6 → C 2 H 4 + H 2

При дегідруванні н-бутану утворюються бутен-1 і бутен-2 (останній у вигляді цис-і транс-ізомерів):

Дегідроциклізація

Ізомеризація

Хімічні властивості циклоалканів

Хімічні властивості циклоалканів із числом атомів вуглецю в циклах більше чотирьох, загалом практично ідентичні властивостям алканів. Для циклопропану та циклобутану, як не дивно, характерні реакції приєднання. Це зумовлено великою напругою всередині циклу, що призводить до того, що ці цикли прагнуть розірватися. Так циклопропан і циклобутан легко приєднують бром, водень або хлороводень:

Хімічні властивості алкенів

1. Реакції приєднання

Оскільки подвійний зв'язок у молекулах алкенів складається з одного міцного сигма- і одного слабкого пи-зв'язку, вони є досить активними сполуками, які легко вступають у реакції приєднання. У такі реакції алкени часто вступають навіть у м'яких умовах - на холоді, у водних розчинах та органічних розчинниках.

Гідрування алкенів

Алкени здатні приєднувати водень у присутності каталізаторів (платина, паладій, нікель):

CH 3 -СН=СН 2 + Н 2 → CH 3 -СН 2 -СН 3

Гідрування алкенів легко протікає навіть при звичайному тиску та незначному нагріванні. Цікавий той факт, що для дегідрування алканів до алкенів можуть використовуватися ті ж каталізатори, тільки процес дегідрування протікає при вищій температурі і меншому тиску.

Галогенування

Алкени легко вступають у реакцію приєднання з бромом як і водному розчині, і з органічних розчинниках. Через війну взаємодії спочатку жовті розчини брому втрачають своє забарвлення, тобто. знебарвлюються.

СН 2 = СН 2 + Br 2 → CH 2 Br-CH 2 Br

Гідрогалогенування

Як неважко помітити, приєднання галогеноводороду до молекули несиметричного алкену має теоретично приводити до суміші двох ізомерів. Наприклад, при приєднанні бромоводню до пропену мали б виходити продукти:

Проте відсутність специфічних умов (наприклад, наявність пероксидів у реакційної суміші) приєднання молекули галогеноводороду відбуватиметься строго селективно відповідно до правилом Марковникова:

Приєднання галогеноводу до алкену відбувається таким чином, що водень приєднується до атома вуглецю з більшим числом атомів водню (більше гідрованого), а галоген - до атома вуглецю з меншим числом атомів водню (менше гідрованого).

Гідратація

Ця реакція призводить до утворення спиртів, а також протікає відповідно до правила Марковнікова:

Як легко здогадатися, через те, що приєднання води до молекули алкену відбувається згідно з правилом Марковникова, утворення первинного спирту можливе лише у разі гідратації етилену:

CH 2 = CH 2 + H 2 O → CH 3 -CH 2 -OH

Саме за такою реакції проводять основну кількість етилового спирту у великотоннажній промисловості.

Полімеризація

Специфічним випадком реакції приєднання можна реакцію полімеризації, яка на відміну від галогенування, гідрогалогенування та гадратації, протікає для вільно-радикального механізму:

Реакції окиснення

Як і всі інші вуглеводні, алкени легко згоряють у кисні з утворенням вуглекислого газу та води. Рівняння горіння алкенів у надлишку кисню має вигляд:

C n H 2n + (3/2)nO 2 → nCO 2 + nH 2 O

На відміну від алканів, алкени легко окислюються. При дії на алкени водного розчину KMnO 4 знебарвлення, що є якісною реакцією на подвійні та потрійні CC зв'язки в молекулах органічних речовин.

Окислення алкенів перманганатом калію в нейтральному або слаболужному розчині призводить до утворення діолів (двохатомних спиртів):

C 2 H 4 + 2KMnO 4 + 2H 2 O → CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH (охолодження)

У кислому середовищі відбувається повне розрив подвійного зв'язку з перетворення атомів вуглецю, що утворювали подвійний зв'язок у карбоксильні групи:

5CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5C 2 H 5 COOH + 8MnSO 4 + 4K 2 SO 4 + 17H 2 O (нагрівання)

У разі, якщо подвійна З=З зв'язок знаходиться в кінці молекули алкену, то як продукт окислення крайнього вуглецевого атома при подвійному зв'язку утворюється вуглекислий газ. Пов'язано це з тим, що проміжний продукт окислення - мурашина кислота легко сама окислюється в надлишку окислювача:

5CH 3 CH=CH 2 + 10KMnO 4 + 15H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 10MnSO 4 + 5K 2 SO 4 + 20H 2 O (нагрівання)

При окисленні алкенів, в яких атом C при подвійному зв'язку містить два вуглеводневі замісники, утворюється кетон. Наприклад, при окисленні 2-метилбутена-2 утворюється ацетон та оцтова кислота.

Окислення алкенів, у якому відбувається розрив вуглецевого скелета по подвійного зв'язку використовується встановлення їх структури.

Хімічні властивості алкадієнів

Реакції приєднання

Наприклад, приєднання галогенів:

Бромна вода знебарвлюється.

У звичайних умовах приєднання атомів галогену відбувається по кінцях молекули бутадієну-1,3, при цьому π-зв'язки розриваються, до крайніх атомів вуглецю приєднуються атоми брому, а вільні валентності утворюють новий π-зв'язок. Таким чином, як би відбувається переміщення подвійного зв'язку. При надлишку брому може бути приєднана ще одна його молекула за місцем подвійного зв'язку, що утворився.

Реакції полімеризації

Хімічні властивості алкінів

Алкіни є ненасиченими (ненасиченими) вуглеводнями у зв'язку з чим здатні вступати в реакції приєднання. Серед реакції приєднання для алкінів найбільш поширене електрофільне приєднання.

Галогенування

Оскільки потрійний зв'язок молекул алкінів складається з одного міцнішого сигма-зв'язку і двох менш міцних пі-зв'язків вони здатні приєднувати як одну, так і дві молекули галогену. Приєднання однією молекулою алкіну двох молекул галогену протікає по електрофільному механізму послідовно у дві стадії:

Гідрогалогенування

Приєднання молекул галогеноводороду також протікає по електрофільному механізму і в дві стадії. В обох стадіях приєднання йде відповідно до правила Марковнікова:

Гідратація

Приєднання води до алкінами відбувається в присутності солей руті в кислому середовищі і називається реакцією Кучерова.

В результаті гідратації приєднання води до ацетилену утворюється ацетальдегід (укусний альдегід):

Для гомологів ацетилену приєднання води призводить до утворення кетонів:

Гідрування алкінів

Алкіни реагують з воднем на два щаблі. Як каталізатори використовують такі метали як платина, паладій, нікель:

Тримеризація алкінів

При пропущенні ацетилену над активованим вугіллям при високій температурі з нього утворюється суміш різних продуктів, основним з яких є бензол продукт тримеризації ацетилену:

Димеризація алкінів

Також ацетилен вступатиме в реакцію димеризації. Процес протікає у присутності солей міді як каталізаторів:

Окислення алкінів

Алкіни згоряють у кисні:

З n H 2n-2 + (3n-1)/2 O 2 → nCO 2 + (n-1)H 2 O

Взаємодія алкінів із основами

Алкіни з потрійною C≡C кінці кінці молекули, на відміну інших алкінів, здатні вступати у реакції, у яких атом водню при потрійного зв'язку заміщається метал. Наприклад, ацетилен реагує з амідом натрію в рідкому аміаку:

HC≡CH + 2NaNH 2 → NaC≡CNa + 2NH 3 ,

а також з аміачним розчином оксиду срібла, утворюючи нерозчинні солеподібні речовини звані ацетиленідами:

Завдяки такій реакції можна розпізнати алкіни з кінцевим потрійним зв'язком, а також виділити такий алкін із суміші з іншими алкінами.

Слід зазначити, що всі ацетиленіди срібла та міді є вибухонебезпечними речовинами.

Ацетиленіди здатні реагувати з галогенпохідними, що використовується при синтезі складніших органічних сполук з потрійним зв'язком:

СН 3 -C≡CН + NaNН 2 → СН 3 -C≡CNa + NН 3

СН 3 -C≡CNa + CH 3 Br → СН 3 -C≡C-СН 3 + NaBr

Хімічні властивості ароматичних вуглеводнів

Ароматичний характер зв'язку впливає хімічні властивості бензолів та інших ароматичних вуглеводнів.

Єдина 6пі-електронна система набагато стійкіша, ніж звичайні пі-зв'язки. Тому для ароматичних вуглеводнів більш характерні реакції заміщення, а чи не приєднання. У реакції заміщення арени вступають за електрофільним механізмом.

Реакції заміщення

Галогенування

Нітрування

Найкраще реакція нітрування протікає під дією не чистої азотної кислоти, а її суміші з концентрованою сірчаною кислотою, так званої нітруючої суміші:

Алкілювання

Реакція при якій один із атомів водню при ароматичному ядрі заміщається на вуглеводневий радикал:

Також замість галогенпохідних алканів можна використовувати алкени. Як каталізатори можна використовувати галогеніди алюмінію, тривалентного заліза або неорганічні кислоти.<

Реакції приєднання

Гідрування

Приєднання хлору

Протікає за радикальним механізмом при інтенсивному опроміненні ультрафіолетовим світлом:

Подібним чином реакція може протікати лише з хлором.

Реакції окиснення

Горіння

2С 6 Н 6 + 15О 2 = 12СО 2 + 6Н 2 О+Q

Неповне окиснення

Бензольне кільце стійке до дії таких окислювачів як KMnO 4 і K 2 Cr 2 O 7 . Реакція не йде.

Розподіл заступників у бензольному кільці на два типи:

Розглянемо хімічні властивості гомологів бензолу з прикладу толуолу.

Хімічні властивості толуолу

Галогенування

Молекулу толуолу можна розглядати як складову з фрагментів молекул бензолу та метану. Тому логічно припустити, що хімічні властивості толуолу мають певною мірою поєднувати хімічні властивості цих двох речовин, взятих окремо. Зокрема, саме це і спостерігається при його галогенуванні. Ми вже знаємо, що бензол вступає в реакцію заміщення з хлором по електрофільному механізму, і для реалізації цієї реакції необхідно використовувати каталізатори (галогеніди алюмінію або тривалентного заліза). У той же час метан також здатний реагувати з хлором, але вже за вільно-радикальним механізмом, для чого потрібне опромінення вихідної реакційної суміші УФ-світлом. Толуол, залежно від того, в яких умовах піддається хлоруванню, здатний дати або продукти заміщення атомів водню в бензольному кільці - для цього потрібно використовувати ті ж умови, що і при хлоруванні бензолу, або продукти заміщення атомів водню в метильному радикалі, якщо на нього, як і на метан діяти хлором при опроміненні ультрафіолетом:

Як можна помітити хлорування толуолу в присутності хлориду алюмінію призвело до двох різних продуктів - орто-і парахлортолуолу. Це пов'язано з тим, що метильний радикал є заступником I роду.

Якщо хлорування толуолу в присутності AlCl 3 проводити надлишку хлору, можливе утворення трихлорзаміщеного толуолу:

Аналогічно при хлоруванні толуолу на світлі при більшому співвідношенні хлор/толуол можна отримати дихлорметилбензол або трихлорметилбензол:

Нітрування

Заміщення атомів водню на нітрогрпу, при нітруванні толуолу сумішшю концентрованих азотної та сірчаної кислот, призводить до продуктів заміщення в ароматичному ядрі, а не метильному радикалі:

Алкілювання

Як було сказано метильный радикал, є орієнтантом I роду, тому його алкілування по Фріделю-Крафтсу наводить продуктам заміщення в орто- і пара-положення:

Реакції приєднання

Толуол можна прогідрувати до метилциклогексану при використанні металевих каталізаторів (Pt, Pd, Ni):

З 6 Н 5 СН 3 + 9O 2 → 7СO 2 + 4Н 2 O

Неповне окиснення

При дії такого окислювача як водний розчин перманганату калію окисленню піддається бічний ланцюг. Ароматичне ядро ​​за таких умов окислитися не може. При цьому залежно від pH розчину утворюватиметься або карбонова кислота, або її сіль.

Граничні вуглеводні мають у складі молекул тільки малополярні і слабополяризующиеся зв'язки, які відрізняються високою міцністю, тому в звичайних умовах вони є речовинами мало хімічно активними по відношенню до полярних реагентів: не взаємодіють з концентрованими кислотами, цілочами, лужними металами, окислювачами. Це і стало приводом до їх назви - парафіни. Parumaffinus латиною малоспоріднений. Їхні хімічні перетворення протікають в основному при підвищених температурах і під дією УФ-опромінення.

Розрізняють три основні типи реакцій граничних вуглеводнів: заміщення, окислення та відщеплення. Ці реакції можуть або за рахунок розриву зв'язку С-С (енергія 83,6 ккал), або за рахунок розриву зв'язку С-Н (енергія 98,8 ккал/моль). Реакції частіше йдуть із розривом зв'язку С-Н, т.к. вона доступніша дії реагенту, хоча зв'язок С-С вимагає менше енергії на розщеплення. Внаслідок таких реакцій проміжно утворюються дуже активні частинки – аліфатичні вуглеводневі радикали.

Отримання та властивості аліфатичних радикалів

1. Утворення вільних радикалів при гомолітичному розщепленні зв'язків С-С або С-Н відбувається при температурі 300-700 про З або під дією вільно-радикальних реагентів.

2. Тривалість існування вільних радикалів (стійкість) збільшується від первинних радикалів до вторинних та третинних:

б) Взаємодія з ненасиченими сполуками: відбувається приєднання з утворенням також нового радикала:

CH 3 . + CH 2 = СН 2 CH 3 -CH 2 -CH 2 .

в) -розпад - радикали з довгим вуглецевим ланцюгом розпадаються з розривом С-З зв'язку в -положенні до вуглецю з неспареним електроном.

CH 3 - CH 2: CH 2 - CH 2 . CH 3 -CH 2 . + CH 2 = CH 2

г) Диспропорціонування - перерозподіл водню, пов'язане з -розпадом по С-Н зв'язку:

+ СН 3 -СН 2 . + СН 3 -СН 3

д) Рекомбінація - поєднання вільних радикалів один з одним

СН 3 . + СН 3 . СН 3 -СН 3

Знаючи особливості поведінки вільних радикалів, легше зрозуміти основні закономірності конкретних реакцій граничних вуглеводнів.

І тип. Реакція заміщення

1. Реакції галоїдування. Найенергійніший реагент – фтор. Пряме фторування призводить до вибуху. Найбільше практичного значення мають реакції хлорування.Вони можуть протікати під впливом молекул хлору світла вже за кімнатної температурі. Реакція протікає за вільно-радикальним ланцюговим механізмом і включає наступні основні стадії:

а) перша повільна стадія - ініціювання ланцюга:

Cl: Cl Cl. + Cl.

R: H+. Cl HCl + R.

б) розвиток ланцюга – утворення продуктів реакції з одночасним утворенням вільних радикалів, що продовжують ланцюговий процес:

R. + Cl: Cl RCl + Cl.

R: H + Cl. HCl + R.

в) обрив ланцюга:

Так як СІ. реагент активний, він може атакувати молекулу вже отриманого хлорпохідного, в результаті утворюється суміш моно-і полігалогенозаміщених. Наприклад:

CH 4 + Cl 2 HCl + CH 3 Cl CH 2 Cl 2 CHCl 3 ССl 4

хлористий метил -HCl -HCl -HCl

хлористий метилен хлороформ чотирьох-

хлористий вуглець

Реакція бромуванняпротікає значно складніше, т.к. бром менш активний, ніж хлор і реагує в основному з утворенням стійкіших третинних або вторинних радикалів. При цьому другий атом брому вступає зазвичай у сусіднє з першим положення, переважно у вторинного вуглецю.

Реакції йодуваннямало протікають, т.к. HI відновлює йодисті алкіли, що утворюються.

2. Нітрування- Заміщення атома Н на групу NО 2 при дії азотної кислоти. Йде при дії розведеної азотної кислоти (12%) за високої температури 150 про З під тиском (реакція Коновалова). Легше реагують парафіни изостроения, т.к. заміщення легше відбувається у третинного атома вуглецю:

Механізм реакції нітрування пов'язаний із проміжним утворенням вільних радикалів. Ініціюванню сприяє процес окиснення, що протікає частково:


RH + HONO 2 ROH + HONO

азотиста кислота

HONO + HONO 2 HOH + 2 . NO 2

+. NO 2

CH 3 -C-CH 3 +. NO 2 CH 3 -C-CH 3 + HNO 2

CH 3 -C-CH 3 +. NO 2 CH 3 -C-CH 3

тобто. радикальна реакція нітрування вуглеводнів немає ланцюгового характеру.

ІІ тип. Реакції окиснення

За звичайних умов парафіни не окислюються ні киснем, ні сильними окислювачами (KMnO 4 , HNO 3 , K 2 Cr 2 O 7 та ін.).

При внесенні відкритого полум'я в суміш вуглеводню з повітрям відбувається повне окислення (згоряння) вуглеводню до СО 2 і Н 2 О. Нагрівання граничних вуглеводнів у суміші з повітрям або киснем у присутності каталізаторів окислення MnО 2 та інших до температури 300 про С з утворенням перекисних сполук. Реакція протікає за ланцюговим вільно-радикальним механізмом.

І: R: H R . + H. ініціювання ланцюга

Р: R. + O: :O: R-O-O.

R-O-O. + R: H R-O-O-H + R .

гідроперекис алкану

O: R-O-O. + R. R-O-O-R обрив ланцюга

перекис алкану

Найлегше піддаються окисленню третинні ланки, складніше вторинні і набагато складніше – первинні. Гідроперекиси, що утворюються, розкладаються.

Первинні гідроперекисипри розкладанні утворюють альдегіди або первинний спирт, наприклад:

СН 3 -С-С-О: О-Н CН 3 -С-О. +. ВІН СН 3 -С = О + Н 2 О

гідроперекис етану оцтовий альдегід

СН 3 -СН 3

побічна

СН 3 -СН 2 ОН + СН 3 -СН 2 .

Вторинні гідроперекисиутворюють при розкладанні кетони або вторинні спирти, наприклад:

СН 3-С-О:ВІН СН 3-С-О. +. ВІН Н 2 Про + СН 3 -С = О

СН 3 СН 3 СН 3

гідроперекис пропану

СН 3 -СН 2 -СН 3

побічна

СН 3 -СН-ВІН + СН 3 - . СН-СН 3

ізопропиловий спирт

Третичні гідроперекисиутворюють кетони, а також первинні та третинні спирти, наприклад:

СН 3 СН 3 СН 3

СН 3 -С-СН 3 СН 3 -С: СН 3 +. ВІН СН 3 ВІН + СН 3 -С=О

гідроперекис ізобутану

СН 3 -СН-СН 3

Побічна

Вибутий

СН 3 -С-СН 3 + СН 3 -С-СН 3

третбутиловий спирт

Будь-який гідроперекис може розкладатися також з виділенням атомарного кисню: СН 3 -СН 2 -О-О-Н СН 3 СН 2 -ОН + [O],

який йде на подальше окиснення:

СН 3 -З + [Про] СН 3 -С-ОН

Тому крім спиртів, альдегідів та кетонів утворюються карбонові кислоти.

Підбором умов реакції можна домогтися отримання одного продукту. Наприклад: 2 СН 4 + О 2 2 СН 3 ВІН.

ДІЄНОВІ ВУГЛЕВОДОРОДИ (АЛКАДІЄНИ)

Дієнові вуглеводні або алкадієни - це ненасичені вуглеводні, що містять дві подвійні вуглець - вуглецеві зв'язки. Загальна формула алкадієнів CnH2n-2.
Залежно від взаємного розташування подвійних зв'язків дієни поділяються на три типи:

1) вуглеводні з кумульованимиподвійними зв'язками, тобто. що примикають до одного атома вуглецю. Наприклад, пропадієн або аллен CH 2 =C=CH 2 ;

2) вуглеводні з ізольованимиподвійними зв'язками, тобто розділеними двома і простішими зв'язками. Наприклад, пентадієн -1,4 CH 2 =CH–CH 2 –CH=CH 2 ;

3) вуглеводні з пов'язанимиподвійними зв'язками, тобто. розділеним одним простим зв'язком. Наприклад, бутадієн -1,3 або дивініл CH 2 =CH–CH=CH 2 , 2-метилбутадієн -1,3 або ізопрен

2) дегідруванням та дегідратацією етилового спирту при пропусканні парів спирту над нагрітими каталізаторами (метод акад. С.В.Лебедєва)

2CH 3 CH 2 OH - ~ ~ 450 ° С;

Фізичні властивості

Хімічні властивості

Атоми вуглецю в молекулі бутадієну-1,3 знаходяться в sp 2 - гібридному стані, що означає розташування цих атомів в одній площині і наявність у кожного з них однієї p-орбіталі, зайнятої одним електроном і перпендикулярно розташованої до згаданої площини.


a)

b)
Схематичне зображення будови молекул дидивінілу (а) та вид моделі зверху (b).
Перекривання електронних хмар між С1-С2 і С3-С4 більше, ніж між С2-С3.

p- Орбіталі всіх атомів вуглецю перекриваються друг з одним, тобто. як між першим і другим, третім і четвертим атомами, а й між другим і третім. Звідси видно, що зв'язок між другим і третім атомами вуглецю не є простим s-зв'язком, а має деяку щільність p-електронів, тобто. слабким характером подвійного зв'язку. Це означає, що s-електрони не належать строго певним парам атомів вуглецю. У молекулі відсутні у класичному розумінні одинарні та подвійні зв'язки, а спостерігається ділокалізація p-електронів, тобто. рівномірний розподіл p-електронної щільності по всій молекулі з утворенням єдиної p-електронної хмари.
Взаємодія двох або декількох сусідніх p-зв'язків з утворенням єдиної p-електронної хмари, внаслідок чого відбувається передача взаємовпливу атомів у цій системі, називається ефектом сполучення.
Таким чином, молекула бутадієну -1,3 характеризується системою поєднаних подвійних зв'язків.
Така особливість у будові дієнових вуглеводнів робить їх здатними приєднувати різні реагенти не тільки до сусідніх вуглецевих атомів (1,2 - приєднання), але і до двох кінців сполученої системи (1,4 - приєднання) з утворенням подвійного зв'язку між другим і третім вуглецевими атомами. . Зазначимо, що дуже часто продукт 1,4 приєднання є основним.
Розглянемо реакції галогенування та гідрогалогенування сполучених дієнів.

Полімеризація дієнових сполук

У спрощеному вигляді реакцію полімеризації бутадієну -1,3 за схемою 1,4 приєднання можна наступним чином:

––––® .

У полімеризації беруть участь обидва подвійні зв'язки дієна. У процесі реакції вони розриваються, пари електронів, що утворюють s- зв'язки роз'єднуються, після чого кожен неспарений електрон бере участь в утворенні нових зв'язків: електрони другого і третього вуглецевих атомів в результаті узагальнення дають подвійний зв'язок, а електрони крайніх ланцюга вуглецевих атомів при узагальненні з електронами відповідних атомів іншої молекули мономеру зв'язують мономери полімерний ланцюжок.

Елементний осередок полібутадієну представляється так:

.

Як видно, полімер, що утворюється, характеризується транс- конфігурацією елементного осередку полімеру. Однак найбільш цінні в практичному відношенні продукти виходять при стереорегулярній (іншими словами, просторово впорядкованій) полімеризації дієнових вуглеводнів за схемою 1,4 приєднання з утворенням цис- Зміни полімерного ланцюга. Наприклад, цис-полібутадієн

.

Натуральний та синтетичний каучуки

Натуральний каучук отримують з соку (латексу) каучуконосного дерева гевеї, що росте в тропічних лісах Бразилії.

При нагріванні без доступу повітря каучук розпадається з утворенням дієнового вуглеводню – 2-метилбутадієну-1,3 або ізопрену. Каучук - це стереорегулярний полімер, в якому молекули ізопрену з'єднані один з одним за схемою 1,4-приєднання з цис- конфігурацією полімерного ланцюга:

Молекулярна маса натурального каучуку коливається в межах 7 . 10 4 до 2,5 . 10 6 .

транс- Полімер ізопрену також зустрічається у природі у вигляді гуттаперчі.

Натуральний каучук має унікальний комплекс властивостей: високу плинність, стійкість до зносу, клейкість, водо- і газонепроникність. Для надання каучуку необхідних фізико-механічних властивостей: міцності, еластичності, стійкості до дії розчинників та агресивних хімічних середовищ – каучук піддають вулканізації нагріванням до 130-140 ° С із сіркою. У спрощеному вигляді процес вулканізації каучуку можна представити так:

Атоми сірки приєднуються за місцем розриву деяких подвійних зв'язків і лінійні молекули каучуку "зшиваються" у великі тривимірні молекули - виходить гума, яка за міцністю значно перевершує невулканізований каучук. Наповнені активною сажею каучуки у вигляді гум використовують для виготовлення автомобільних шин та інших гумових виробів.

У 1932 році С.В.Лебедєв розробив спосіб синтезу синтетичного каучуку на основі бутадієну, що отримується зі спирту. І лише у п'ятдесяті роки вітчизняні вчені здійснили каталітичну стереополімеризацію дієнових вуглеводнів та отримали стереорегулярний каучук, близький за властивостями до натурального каучуку. В даний час у промисловості випускають каучук,

Характерні хімічні властивості вуглеводнів: алканів, алкенів, дієнів, алкінів, ароматичних вуглеводнів

Алкани

Алкани - вуглеводні, у молекулах яких атоми пов'язані одинарними зв'язками і відповідають загальній формулі $С_(n)Н_(2n+2)$.

Гомологічний ряд метану

Як ви вже знаєте, гомологи- Це речовини, подібні за будовою і властивостями і відрізняються на одну або більше груп СН_2 $.

Граничні вуглеводні становлять гомологічний ряд метану.

Ізомерія та номенклатура

Для алканів характерна так звана структурна ізомерія. Структурні ізомери відрізняються один від одного будовою вуглецевого скелета. Як вам уже відомо, найпростіший алкан, для якого характерні структурні ізомери, це бутан:

Розглянемо докладніше для алканів основи номенклатури ІЮПАК:

1. Вибір головного кола.

Формування назви вуглеводню починається з визначення головного ланцюга — найдовшого ланцюжка атомів вуглецю в молекулі, який є ніби її основою.

2.

Атомам головного ланцюга надають номери. Нумерація атомів головного ланцюга починається з того кінця, якого ближче стоїть заступник (структури А, Б). Якщо заступники знаходяться на рівній відстані від кінця ланцюга, то нумерація починається від того кінця, при якому їх більше (структура). Якщо різні заступники знаходяться на рівній відстані від кінців ланцюга, то нумерація починається з того кінця, до якого ближче старший (структура Г). Старшинство вуглеводневих заступників визначається за тим, в якому порядку слідує в алфавіті буква, з якої починається їх назва: метил (—$СН_3$), потім пропив ($—СН_2—СН_2—СН_3$), етил ($—СН_2—СН_3$ ) і т.д.

Зверніть увагу на те, що назва заступника формується заміною суфікса -анна суфікс -ілу назві відповідного алкану.

3. Формування назви.

На початку назви вказують цифри — номери атомів вуглецю, за яких знаходяться заступники. Якщо при цьому атомі знаходяться кілька заступників, то відповідний номер у назві повторюється двічі через кому ($2.2-$). Після номера через дефіс вказують кількість заступників ( ді- два, три- три, тетра- чотири, пента- п'ять) та назва заступника ( метил, етил, пропив). Потім без прогалин і дефісів назва головного ланцюга. Головний ланцюг називається як вуглеводень - член гомологічного ряду метану ( метан, етан, пропан і т.д.).

Назви речовин, структурні формули яких наведені вище, такі:

- Структура А: $ 2 $ -метилпропан;

- Структура Б: $ 3 $ -етилгексан;

- Структура В: $ 2,2,4 $ -триметилпентан;

- Структура Г: $ 2 $ -метил$4$-етілгексан.

Фізичні та хімічні властивості алканів

Фізичні властивості.Перші чотири представники гомологічного ряду метану – гази. Найпростіший з них — метан — газ без кольору, смаку та запаху (запах газу, відчувши який, треба дзвонити $104$, визначається запахом меркаптанів — сірковмісних сполук, що спеціально додаються до метану, що використовується в побутових та промислових газових приладах, для того, щоб люди , що знаходяться поряд з ними, могли за запахом визначити витік).

Вуглеводні складу від $С_5Н_(12)$ до $С_(15)Н_(32)$ - рідини; Найважчі вуглеводні - тверді речовини.

Температури кипіння та плавлення алканів поступово збільшуються із зростанням довжини вуглецевого ланцюга. Усі вуглеводні погано розчиняються у воді, рідкі вуглеводні є поширеними органічними розчинниками.

Хімічні властивості.

1. Реакція заміщення.Найбільш характерними для алканів є реакції вільнорадикального заміщення, в ході якого атом водню заміщається на атом галогену або групу.

Наведемо рівняння найхарактерніших реакцій.

Галогенування:

$CH_4+Cl_2→CH_3Cl+HCl$.

У разі надлишку галогену хлорування може піти далі, аж до повного заміщення всіх атомів водню на хлор:

$CH_3Cl+Cl_2→HCl+(CH_2Cl_2)↙(\text"дихлорметан(хлористий метилен)")$,

$CH_2Cl_2+Cl_2→HCl+(CHСl_3)↙(\text"трихлорметан(хлороформ)")$,

$CHCl_3+Cl_2→HCl+(CCl_4)↙(\text"тетрахлорметан(чотирьоххлористий вуглець)")$.

Отримані речовини широко використовуються як розчинники та вихідні речовини в органічних синтезах.

2. Дегідрування (відщеплення водню).У ході пропускання алканів над каталізатором ($Pt, Ni, Al_2O_3, Cr_2O_3$) при високій температурі ($400-600°С$) відбувається відщеплення молекули водню та утворення алкену:

$CH_3-CН_3→СH_2=CH_2+Н_2$

3. Реакції, що супроводжуються руйнуванням вуглецевого ланцюга.Усі граничні вуглеводні горятьз утворенням вуглекислого газу та води. Газоподібні вуглеводні, змішані з повітрям у певних співвідношеннях, можуть вибухати. Горіння граничних вуглеводнів - це вільнорадикальна екзотермічна реакція, яка має дуже велике значення при використанні алканів як паливо:

$СН_4+2О_2→СО_2+2Н_2O+880 кДж.$

У загальному вигляді реакцію горіння алканів можна записати так:

$C_(n)H_(2n+2)+((3n+1)/(2))O_2→nCO_2+(n+1)H_2O$

Термічне розщеплення вуглеводнів:

$C_(n)H_(2n+2)(→)↖(400-500°C)C_(n-k)H_(2(n-k)+2)+C_(k)H_(2k)$

Процес протікає за вільнорадикальним механізмом. Підвищення температури призводить до гомолітичного розриву вуглець-вуглецевого зв'язку та утворення вільних радикалів:

$R-CH_2CH_2:CH_2-R→R-CH_2CH_2·+·CH_2-R$.

Ці радикали взаємодіють між собою, обмінюючись атомом водню, з утворенням молекули алкану та молекули алкену:

$R-CH_2CH_2·+·CH_2-R→R-CH=CH_2+CH_3-R$.

Реакції термічного розщеплення лежать основу промислового процесу — крекінгу вуглеводнів. Цей процес є найважливішою стадією переробки нафти.

При нагріванні метану до температури $1000°С починається піроліз метану — розкладання на прості речовини:

$CH_4(→)↖(1000°C)C+2H_2$

При нагріванні до температури $1500°С$ можливе утворення ацетилену:

$2CH_4(→)↖(1500°C)CH=CH+3H_2$

4. Ізомеризація.При нагріванні лінійних вуглеводнів з каталізатором ізомеризації (хлоридом алюмінію) відбувається утворення речовин із розгалуженим вуглецевим скелетом:

5. Ароматизація.Алкани з шістьма та більше вуглецевими атомами в ланцюгу в присутності каталізатора циклізуються з утворенням бензолу та його похідних:

У чому причина того, що алкани вступають у реакції, що протікають за вільнорадикальним механізмом? Усі атоми вуглецю в молекулах алканів перебувають у стані $sp^3$-гібридизації. Молекули цих речовин побудовані за допомогою ковалентних неполярних $С-С$ (вуглець - вуглець) зв'язків та слабополярних $С-Н$ (вуглець - водень) зв'язків. Вони немає ділянок з підвищеною і зі зниженою електронною щільністю, легко поляризованих зв'язків, тобто. таких зв'язків, електронна щільність яких може зміщуватися під впливом зовнішніх чинників (електростатичних полів іонів). Отже, алкани нічого очікувати реагувати із зарядженими частинками, т.к. зв'язки в молекулах алканів не розриваються за гетеролітичним механізмом.

Алкени

До ненасичених відносять вуглеводні, що містять в молекулах кратні зв'язки між атомами вуглецю. Ненасичені алкени, алкадієни (полієни), алкіни.Ненасиченим характером мають також циклічні вуглеводні, що містять подвійний зв'язок у циклі (циклоалкени), а також циклоалкани з невеликим числом атомів вуглецю в циклі (три або чотири атоми). Властивість ненасиченості пов'язана зі здатністю цих речовин вступати в реакції приєднання, насамперед водню, з утворенням граничних, або насичених, вуглеводнів - алканів.

Алкени — ациклічні вуглеводні, що містять у молекулі, крім одинарних зв'язків, один подвійний зв'язок між атомами вуглецю та відповідні загальній формулі $С_(n)Н_(2n)$.

Своя друга назва - олефіни- Алкени отримали за аналогією з жирними ненасиченими кислотами (олеїнова, лінолева), залишки яких входять до складу рідких жирів - масел (від лат. oleum- масло).

Гомологічний ряд етену

Нерозгалужені алкени складають гомологічний ряд етену (етилену):

$С_2Н_4$ — етен, $С_3Н_6$ — пропен, $С_4Н_8$ — бутен, $С_5Н_(10)$ — пентен, $С_6Н_(12)$ — гексен тощо.

Ізомерія та номенклатура

Для алкенів, так само, як і для алканів, характерна структурна ізомерія. Структурні ізомери відрізняються один від одного будовою вуглецевого скелета. Найпростіший алкен, для якого характерні структурні ізомери, - це бутен:

Особливим видом структурної ізомерії є ізомерія положення подвійного зв'язку:

$СН_3—(СН_2)↙(бутен-1)—СН=СН_2$ $СН_3—(СН=СН)↙(бутен-2)—СН_3$

Навколо одинарного вуглець-вуглецевого зв'язку можливе практично вільне обертання атомів вуглецю, тому молекули алканів можуть набувати найрізноманітнішої форми. Обертання навколо подвійного зв'язку неможливо, що призводить до появи у алкенів ще одного виду ізомерії - геометричної, або цис-транс ізомерії.

Цис-ізомери відрізняються від транс-ізомерів просторовим розташуванням фрагментів молекули (в даному випадку мітильних груп) щодо площини $π$-зв'язку, а отже, і властивостями.

Алкени ізомерні циклоалканам (міжкласова ізомерія), наприклад:

Номенклатура алкенів, розроблена ІЮПАК, схожа на номенклатуру алканів.

1. Вибір головного кола.

Утворення назви вуглеводню починається з визначення головного ланцюга - найдовшого ланцюжка атомів вуглецю в молекулі. У разі алкенів головний ланцюг повинен містити подвійний зв'язок.

2. Нумерація атомів головного кола.

Нумерація атомів головного ланцюга починається з того кінця, до якого ближче перебуває подвійний зв'язок. Наприклад, правильна назва з'єднання:

$5$-метилгексен-$2$, а не $2$-метилгексен-$4$, як можна було б припустити.

Якщо за становищем подвійного зв'язку не можна визначити початок нумерації атомів у ланцюзі, його визначає положення заступників, як і граничних вуглеводнів.

3. Формування назви.

Назви алкенів формуються так само, як і назви алканів. Наприкінці назви вказують номер атома вуглецю, у якого починається подвійний зв'язок, і суфікс, що позначає належність з'єднання до класу алкенів. -Єн.

Наприклад:

Фізичні та хімічні властивості алкенів

Фізичні властивості.Перші три представники гомологічного ряду алкенів - гази; речовини складу $С_5Н_(10)$ - $С_(16)Н_(32)$ - рідини; вищі алкени – тверді речовини.

Температури кипіння та плавлення закономірно підвищуються зі збільшенням молекулярної маси сполук.

Хімічні властивості.

Реакція приєднання.Нагадаємо, що відмінною рисою представників ненасичених вуглеводнів - алкенів є здатність вступати в реакції приєднання. Більшість цих реакцій протікає механізмом

1. Гідрування алкенів.Алкени здатні приєднувати водень у присутності каталізаторів гідрування, металів - платини, паладію, нікелю:

$CH_3-CH_2-CH=CH_2+H_2(→)↖(Pt)CH_3-CH_2-CH_2-CH_3$.

Ця реакція протікає при атмосферному і підвищеному тиску і вимагає високої температури, т.к. є екзотермічною. При підвищенні температури на тих же каталізаторах може бути зворотна реакція — дегідрування.

2. Галогенування (приєднання галогенів).Взаємодія алкену з бромною водою або розчином брому в органічному розчиннику ($CCl_4$) призводить до швидкого знебарвлення цих розчинів в результаті приєднання молекули галогену до алкену та утворення дигалоген алканів:

$СН_2=СН_2+Br_2→CH_2Br—CH_2Br$.

3.

$CH_3-(CH)↙(пропен)=CH_2+HBr→CH_3-(CHBr)↙(2-бромпропен)-CH_3$

Ця реакція підпорядковується правилу Марковнікова:

При приєднанні галогеноводороду до алкену водень приєднується до гидрированному атому вуглецю, тобто. атому, у якому перебуває більше атомів водню, а галоген — менш гидрированному.

Гідратація алкенів призводить до утворення спиртів. Наприклад, приєднання води до етену лежить в основі одного з промислових способів одержання етилового спирту:

$(CH_2)↙(етен)=CH_2+H_2O(→)↖(t,H_3PO_4)CH_3-(CH_2OH)↙(етанол)$

Зверніть увагу на те, що первинний спирт (з гідроксогрупою при первинному вуглеці) утворюється тільки при гідратації етену. При гідратації пропену чи інших алкенів утворюються вторинні спирти.

Ця реакція протікає також відповідно до правила Марковнікова - катіон водню приєднується до більш гідрованого атома вуглецю, а гідроксогрупа - до менш гідрованого.

5. Полімеризація.Особливим випадком приєднання є реакція полімеризації алкенів:

$nCH_2(=)↙(етен)CH_2(→)↖(УФ-світло,R)(...(-CH_2-CH_2-)↙(поліетилен)...)_n$

Ця реакція приєднання протікає вільнорадикальним механізмом.

6. Реакція окиснення.

Як і будь-які органічні сполуки, алкени горять у кисні з утворенням $СО_2$ і $Н_2О$:

$СН_2=СН_2+3О_2→2СО_2+2Н_2О$.

Загалом:

$C_(n)H_(2n)+(3n)/(2)O_2→nCO_2+nH_2O$

На відміну від алканів, які є стійкими до окислення в розчинах, алкени легко окислюються під дією розчинів перманганату калію. У нейтральних або лужних розчинах відбувається окислення алкенів до діолів (двохатомних спиртів), причому гідроксильні групи приєднуються до тих атомів, між якими до окислення існував подвійний зв'язок:

Алкадієни (дієнові вуглеводні)

Алкадієни — ациклічні вуглеводні, що містять у молекулі, крім одинарних зв'язків, два подвійні зв'язки між атомами вуглецю та відповідні загальній формулі $С_(n)Н_(2n-2)$.

Залежно від взаємного розташування подвійних зв'язків розрізняють три види дієнів:

- алкадієни з кумульованимрозташуванням подвійних зв'язків:

- алкадієни з пов'язанимиподвійними зв'язками;

$ CH_2 = CH-CH = CH_2 $;

- алкадієни з ізольованимиподвійними зв'язками

$CH_2=CH-CH_2-CH=CH_2$.

Ці всі три види алкадієнів суттєво відрізняються один від одного за будовою та властивостями. Центральний атом вуглецю (атом, що утворює два подвійні зв'язки) в алкадієнах з кумульованими зв'язками знаходиться в стані $sp$-гібридизації. Він утворює два $σ$-зв'язку, що лежать на одній прямій і спрямовані в протилежні сторони, і два $π$-зв'язку, що лежать у перпендикулярних площинах. $π$-Зв'язки утворюються за рахунок негібридизованих р-орбіталей кожного атома вуглецю. Властивості алкадієнів із ізольованими подвійними зв'язками дуже специфічні, т.к. пов'язані $π$-зв'язки істотно впливають один на одного.

р-орбіталі, що утворюють пов'язані $π$-зв'язку, становлять практично єдину систему (її називають $π$-системою), т.к. р-орбіталі сусідніх $π$-зв'язків частково перекриваються.

Ізомерія та номенклатура

Для алкадієнів характерна як структурна ізомерія, так і цис-, транс-ізомерія.

Структурна ізомерія.

ізомерія вуглецевого скелета:

ізомерія положення кратних зв'язків:

$(CH_2=CH—CH=CH_2)↙(бутадієн-1,3)$ $(CH_2=C=CH—CH_3)↙(бутадієн-1,2)$

Цис-, транс-ізомерія (просторова та геометрична)

Наприклад:

Алкадієни ізомерні сполукам класів алкінів та циклоалкенів.

Під час формування назви алкадієну вказують номери подвійних зв'язків. Головний ланцюг повинен обов'язково містити два кратні зв'язки.

Наприклад:

Фізичні та хімічні властивості алкадієнів

Фізичні властивості.

У звичайних умовах пропандієн-1,2, бутадієн-1,3 - гази, 2-метилбутадієн-1,3 - летюча рідина. Алкадієни з ізольованими подвійними зв'язками (найпростіший з них – пентадієн-1,4) – рідини. Вищі дієни – тверді речовини.

Хімічні властивості.

Хімічні властивості алкадієнів із ізольованими подвійними зв'язками мало відрізняються від властивостей алкенів. Алкадієни з пов'язаними зв'язками мають деякі особливості.

1. Реакція приєднання.Алкадієни здатні приєднувати водень, галогени, галогеноводи.

Особливістю приєднання до алкадієнів із сполученими зв'язками є здатність приєднувати молекули як у положеннях 1 та 2, так і у положеннях 1 та 4.

Співвідношення продуктів залежить від умов та способу проведення відповідних реакцій.

2.Реакція полімеризації.Найважливішим властивістю дієнів є здатність полімеризуватися під впливом катіонів або вільних радикалів. Полімеризація цих сполук є основою синтетичних каучуків:

$nCH_2=(CH—CH=CH_2)↙(бутадієн-1,3)→((... —CH_2—CH=CH—CH_2— ...)_n)↙(\text"синтетичний бутадієновий каучук")$ .

Полімеризація сполучених дієнів протікає як 1,4-приєднання.

У цьому випадку подвійний зв'язок виявляється центральним у ланці, а елементарна ланка, у свою чергу, може приймати як цис-, так і транс-конфігурацію.

Алкіни

Алкіни — ациклічні вуглеводні, що містять у молекулі, крім одинарних зв'язків, один потрійний зв'язок між атомами вуглецю та відповідні загальній формулі $С_(n)Н_(2n-2)$.

Гомологічний ряд

Нерозгалужені алкін складають гомологічний ряд етину (ацетилену):

$С_2Н_2$ — етин, $С_3Н_4$ — пропін, $С_4Н_6$ — бутин, $С_5Н_8$ — пентин, $С_6Н_(10)$ — гексин тощо.

Ізомерія та номенклатура

Для алкінів, так само як і для алкенів, характерна структурна ізомерія: ізомерія вуглецевого скелета та ізомерія положення кратного зв'язку. Найпростіший алкін, для якого характерні структурні ізомери положення кратного зв'язку класу алкінів, - це бутин:

$СН_3—(СН_2)↙(бутин-1)—С≡СН$ $СН_3—(С≡С)↙(бутин-2)—СН_3$

Ізомерія вуглецевого скелета у алкінів можлива, починаючи з пентину:

Так як потрійний зв'язок передбачає лінійну будову вуглецевого ланцюга, геометрична ( цис-, транс-) ізомерія для алкінів неможлива.

Наявність потрійного зв'язку в молекулах вуглеводнів цього класу відбивається суфіксом -ін, А її становище в ланцюзі - номером атома вуглецю.

Наприклад:

Алкінам ізомерні сполуки деяких інших класів. Так, хімічну формулу $С_6Н_(10)$ мають гексин (алкін), гексадієн (алкадієн) та циклогексен (циклоалкен):

Фізичні та хімічні властивості алкінів

Фізичні властивості.Температури кипіння та плавлення алкінів, так само, як і алкенів, закономірно підвищуються зі збільшенням молекулярної маси сполук.

Алкіни мають специфічний запах. Вони краще розчиняються у воді, ніж алкани та алкени.

Хімічні властивості.

Реакція приєднання.Алкіни відносяться до ненасичених сполук і вступають в реакції приєднання. Здебільшого це реакції електрофільного приєднання.

1. Галогенування (приєднання молекули галогену).Алкін здатний приєднати дві молекули галогену (хлору, брому):

$CH≡CH+Br_2→(CHBr=CHBr)↙(1,2-диброметан),$

$CHBr=CHBr+Br_2→(CHBr_2-CHBr_2)↙(1,1,2,2-тетраброметан)$

2. Гідрогалогенування (приєднання галогеноводороду).Реакція приєднання галогеноводороду, що протікає по електрофільному механізму, також йде у дві стадії, причому на обох стадіях виконується правило Марковникова:

$CH_3-C≡CH+Br→(CH_3-CBr=CH_2)↙(2-бромпропен),$

$CH_3-CBr=CH_2+HBr→(CH_3-CHBr_2-CH_3)↙(2,2-дибромпропан)$

3. Гідратація (приєднання води).Велике значення для промислового синтезу кетонів та альдегідів має реакція приєднання води (гідратація), яку називають реакцією Кучерова:

4. Гідрування алкінів.Алкіни приєднують водень у присутності металевих каталізаторів ($Pt, Pd, Ni$):

$R-C≡C-R+H_2(→)↖(Pt)R-CH=CH-R,$

$R-CH=CH-R+H_2(→)↖(Pt)R-CH_2-CH_2-R$

Оскільки потрійний зв'язок містить два реакційно здатні $π$-зв'язки, алкани приєднують водень східчасто:

1) трімеризація.

При пропущенні етину над активованим вугіллям утворюється суміш продуктів, одним з яких є бензол:

2) димеризація.

Крім тримеризації ацетилену, можлива його димеризація. Під дією солей одновалентної міді утворюється вінілацетилен:

$2HC≡CH→(HC≡C-CH=CH_2)↙(\text"бутен-1-ін-3(вінілацетилен)")$

Ця речовина використовується для отримання хлоропрену:

$HC≡C-CH=CH_2+HCl(→)↖(CaCl)H_2C=(CCl-CH)↙(хлоропрен)=CH_2$

полімеризацією якого отримують хлоропреновий каучук:

$nH_2C=CCl-CH=CH_2→(...-H_2C-CCl=CH-CH_2-...)_n$

Окислення алкінів.

Етин (ацетилен) горить у кисні з виділенням дуже великої кількості теплоти:

$2C_2H_2+5O_2→4CO_2+2H_2O+2600кДж$ На цій реакції заснована дія киснево-ацетиленового пальника, полум'я якого має дуже високу температуру (понад $3000°С$), що дозволяє використовувати її для різання та зварювання металів.

На повітрі ацетилен горить полум'ям, що коптить, т.к. вміст вуглецю в його молекулі вищий, ніж у молекулах етану та етену.

Алкіни, як і алкени, знебарвлюють підкислені розчини перманганату калію; при цьому відбувається руйнація кратного зв'язку.

Іонний (правило В. В. Марковникова) та радикальний механізм реакції в органічній хімії

Типи хімічних реакцій в органічній хімії

Реакції органічних речовин можна формально розділити на чотири основні типи: заміщення, приєднання, відщеплення (елімінування) та перегрупування (ізомеризації). Очевидно, що все різноманіття реакцій органічних сполук неможливо звести до запропонованої класифікації (наприклад, реакції горіння). Однак така класифікація допоможе встановити аналогії з вже знайомими вам з курсу неорганічної хімії реакціями між неорганічними речовинами.

Як правило, основну органічну сполуку, що бере участь у реакції, називають субстратом, а інший компонент реакції умовно розглядають як реагент.

Реакції заміщення

Реакції, у яких здійснюється заміна одного атома чи групи атомів у вихідній молекулі (субстраті) інші атоми чи групи атомів, називаються реакціями заміщення.

В реакції заміщення вступають граничні та ароматичні сполуки, такі як алкани, циклоалкани або арени.

Наведемо приклади таких реакцій.

Під дією світла атоми водню в молекулі метану здатні заміщатися на атоми галогену, наприклад, атоми хлору:

$CH_4+Cl_2→CH_3Cl+HCl$

Іншим прикладом заміщення водню на галоген є перетворення бензолу на бромбензол:

Рівняння цієї реакції може бути записано інакше:

При цій формі запис реагенти, каталізатор, умови проведення реакції записують над стрілкою, а неорганічні продукти реакції - під нею.

Реакції приєднання

Реакції, у яких дві чи більше молекул реагуючих речовин з'єднуються до однієї, називають реакціями приєднання.

У реакції приєднання вступають ненасичені сполуки, такі як алкени або алкіни.

Залежно від того, яка молекула виступає як реагент, розрізняють гідрування (або відновлення), галогенування, гідрогалогенування, гідратацію та інші реакції приєднання. Кожна з них потребує певних умов.

1. Гідрування- Реакція приєднання молекули водню по кратному зв'язку:

$CH_3(-CH=)↙(\text"пропен")CH_2+H_2(→)↖(Pt)CH_3(-CH_2-)↙(\text"пропан")-CH_3$

2.Гідрогалогенування- Реакція приєднання галогеноводороду (гідрохлорування):

$(CH_2=)↙(\text"етен")CH_2+HCl→CH_3(-CH_2-)↙(\text"хлоретан")-Cl$

3.Галогенування- Реакція приєднання галогену:

$(CH_2=)↙(\text"етен")CH_2+Cl_2→(CH_2Cl-CH_2Cl)↙(\text"1.2-дихлоретан")$

4. Полімеризація- особливий тип реакцій приєднання, в ході яких молекули речовини з невеликою молекулярною масою з'єднуються одна з одною з утворенням молекул речовини з дуже високою молекулярною масою. макромолекул.

Реакції полімеризації - це процеси з'єднання безлічі молекул низькомолекулярної речовини (мономіра) у великі молекули (макромолекули) полімеру.

Прикладом реакції полімеризації може бути отримання поліетилену з етилену (етену) під дією ультрафіолетового випромінювання та радикального ініціатора полімеризації $R:$

$(nCH_2=)↙(\text"етен")CH_2(→)↖(\text"УФ-світло,R")((...-CH_2-CH_2-...)_n)↙(\text" поліетилен")$

Найбільш характерний для органічних сполук ковалентний зв'язок утворюється при перекриванні атомних орбіталей та утворенні загальних електронних пар. Внаслідок цього утворюється загальна для двох атомів орбіталь, на якій знаходиться загальна електронна пара. При розриві зв'язку доля цих електронів може бути різною.

Типи реакційноздатних частинок в органічній хімії

Орбіталь з неспареним електроном, що належить одному атому, може перекриватися з орбіталлю іншого атома, де також знаходиться неспарений електрон. При цьому відбувається утворення ковалентного зв'язку з обмінного механізму:

$H + H→H:H,$ або $H-H$

Обмінний механізмУтворення ковалентного зв'язку реалізується в тому випадку, якщо загальна електронна пара утворюється з неспарених електронів, що належать різним атомам.

p align="justify"> Процесом, протилежним утворенню ковалентного зв'язку по обмінному механізму, є розрив зв'язку, при якому до кожного атома відходить по одному електрону. Внаслідок цього утворюються дві незаряджені частинки, що мають неспарені електрони:

Такі частки називаються вільними радикалами.

Вільні радикали- Атоми або групи атомів, що мають неспарені електрони.

Реакції, що протікають під дією та за участю вільних радикалів, називаються вільнорадикальними реакціями.

У курсі неорганічної хімії це реакції взаємодії водню із киснем, галогенами, реакції горіння. Зауважте, що реакції цього типу відрізняються високою швидкістю, виділенням великої кількості тепла.

Ковалентний зв'язок може утворитися і за донорно-акцепторним механізмом. Одна з орбіталей атома (або аніону), на якій знаходиться неподілена електронна пара, перекривається незаповненою орбіталлю іншого атома (або катіону), що має незаповнену орбіталь, при цьому формується ковалентний зв'язок, наприклад:

$H^(+)+(:O-H^(-))↙(\text"акцептор")→(H-O-H)↙(\text"донор")$

Розрив ковалентного зв'язку призводить до утворення позитивно та негативно заряджених частинок; оскільки в даному випадку обидва електрони із загальної електронної пари залишаються при одному з атомів, у другого атома виходить незаповнена орбіталь:

$R:|R=R:^(-)+R^(+)$

Розглянемо електролітичну дисоціацію кислот:

$H:|Cl=H^(+)+Cl^(-)$

Можна легко здогадатися, що частка, що має неподілену електронну пару $R:^(-)$, тобто негативно заряджений іон, буде притягуватися до позитивно заряджених атомів або атомів, на яких існує принаймні частковий або ефективний позитивний заряд. Частинки з неподіленими електронними парами називають нуклеофільними агентами (Nucleus- Ядро, позитивно заряджена частина атома), тобто «друзями» ядра, позитивного заряду.

Нуклеофіли ($Nu$)- аніони або молекули, що мають неподілену пару електронів, що взаємодіють з ділянками молекул, на яких зосереджено ефективний позитивний заряд.

Приклади нуклеофілів: $Cl^(-)$ (хлорид-іон), $ОН^(-)$ (гідроксид-аніон), $СН_3О^(-)$ (метоксид-аніон), $СН_3СОО^(-)$ ( ацетат-аніон).

Частинки, що мають незаповнену орбіталь, навпаки, прагнутимуть заповнити її і, отже, притягуватимуться до ділянок молекул, на яких присутня підвищена електронна щільність, негативний заряд, неподілена електронна пара. Вони є електрофілами, «друзями» електрона, негативного заряду чи частинок із підвищеною електронною щільністю.

Електрофіли— катіони або молекули, що мають незаповнену електронну орбіталь, що прагнуть заповнення її електронами, оскільки це призводить до більш вигідної електронної конфігурації атома.

Приклади електрофілів: $ NO_2 $ (нітрогрупа), - $ СООН $ (карбоксил), - $ СN $ (нітрильна група), - $ СОН $ (альдегідна група).

Не будь-яка частка із незаповненою орбіталлю є електрофілом. Так, наприклад, катіони лужних металів мають конфігурацію інертних газів і не прагнуть придбання електронів, оскільки мають низьку спорідненість до електрона. З цього можна зробити висновок, що, незважаючи на наявність у них незаповненої орбіталі, подібні частинки не будуть електрофілами.

Основні механізми перебігу реакцій

Ми виділили три основні типи реагуючих частинок – вільні радикали, електрофіли, нуклеофіли – і три відповідні їм типи механізму реакцій:

- Вільнорадикальні;

- Електрофільні;

- Нуклеофільні.

Крім класифікації реакцій на кшталт реагуючих частинок, в органічній хімії розрізняють чотири виду реакцій за принципом зміни складу молекул: приєднання, заміщення, відщеплення, або елімінування (від лат. eliminaue- видаляти, відщеплювати) та перегрупування. Так як приєднання та заміщення можуть відбуватися під дією всіх трьох типів реакційноздатних частинок, можна виділити кілька основних механізмів перебігу реакцій.

1.Вільнорадикальне заміщення:

$(CH_4)↙(\text"метан")+Br_2(→)↖(\text"УФ-світло")(CH_3Br)↙(\text"бромметан")+HBr$

2. Вільнорадикальне приєднання:

$nCH_2=CH_2(→)↖(\text"УФ-світло,R")(...-CH_2-CH_2-...)_n$

3. Електрофільне заміщення:

4. Електрофільне приєднання:

$CH_3-(CH=)↙(\text"пропен")CH_2+HBr(→)↖(\text"розчин")(CH_3-CHBr-CH_3)↙(\text"2-бромпропан")$

$СH_3(-C≡)↙(\text"пропін")CH+Cl_2(→)↖(\text"розчин")(CH_3-CCl=CHCl)↙(\text"1,2-дихлорпропен")$

5. Нуклеофільне приєднання:

Крім того, ми розглянемо реакції відщеплення, або елімінування, що йдуть під впливом нуклеофільних частинок – основ.

6. Елімінування:

$СH_3-CHBr-CH_3+NaOH(→)↖(\text"спиртовий розчин")CH_3-CH=CH_2+NaBr+H_2O$

Правило В. В. Марковнікова

Відмінною рисою алкенів (ненасичених вуглеводнів) є здатність вступати в реакції приєднання. Більшість цих реакцій протікає механізмом електрофільного приєднання.

Гідрогалогенування (приєднання галогеноводороду):

$CH_3(-CH-)↙(\text"пропен")CH_2+HBr→CH_3(-CHBr-CH_3)↙(\text"2-бромпропан")$

Ця реакція підпорядковується правилу В. В. Марковнікова:при приєднанні галогенводню до алкену водень приєднується до гидрированному атому вуглецю, тобто. атому, у якому перебуває більше атомів водню, а галоген — менш гидрированному.

Вуглеводні, в молекулах яких атоми пов'язані одинарними зв'язками та відповідають загальній формулі C n H 2 n +2 .
У молекулах алканів всі атоми вуглецю перебувають у стані sр 3 -гібридизації. Це означає, що всі чотири гібридні орбіталі атома вуглецю однакові за формою, енергією і направлені в кути рівносторонньої трикутної піраміди - тетраедра. Кути між орбіталями дорівнюють 109 ° 28 '.

Навколо одинарного вуглець-вуглецевого зв'язку можливе практично вільне обертання, і молекули алканів можуть набувати найрізноманітнішої форми з кутами при атомах вуглецю, близькими до тетраедричного (109° 28′), наприклад, в молекулі н-Пентана.

Варто нагадати про зв'язки в молекулах алканів. Усі зв'язки в молекулах граничних вуглеводнів одинарні. Перекривання відбувається по осі,
що з'єднує ядра атомів, тобто це σ-зв'язку. Зв'язки вуглець - вуглець є неполярними і погано поляризуються. Довжина С-З зв'язку в алканах дорівнює 0,154 нм (1,54 10 - 10 м). Зв'язки С-Н дещо коротші. Електронна густина трохи зміщена у бік більш електронегативного атома вуглецю, тобто зв'язок С-Н є слабополярним.

Відсутність у молекулах граничних вуглеводнів полярних зв'язків призводить до того, що вони погано розчиняються у воді, не вступають у взаємодію із зарядженими частинками (іонами). Найбільш характерними для алканів є реакції, що відбуваються за участю вільних радикалів.

Гомологічний ряд метану

Гомологи- Речовини, подібні за будовою та властивостями і відрізняються на одну або більше груп СН 2 .

Ізомерія та номенклатура

Для алканів характерна так звана структурна ізомерія. Структурні ізомери відрізняються один від одного будовою вуглецевого скелета. Найпростіший алкан, котрим характерні структурні ізомери, - це бутан.

Основи номенклатури

1. Вибір головного кола.Формування назви вуглеводню починається з визначення головного ланцюга - найдовшого ланцюжка атомів вуглецю в молекулі, яка є ніби її основою.
2. Нумерація атомів головного кола.Атомам головного ланцюга надають номери. Нумерація атомів головного ланцюга починається з того кінця, якого ближче стоїть заступник (структури А, Б). Якщо заступники знаходяться на рівній відстані від кінця ланцюга, то нумерація починається від того кінця, при якому їх більше (структура). Якщо різні заступники знаходяться на рівній відстані від кінців ланцюга, то нумерація починається з того кінця, до якого ближче старший (структура Г). Старшинство вуглеводневих заступників визначається за тим, в якому порядку слідує в алфавіті буква, з якої починається їх назва: метил (-СН 3), потім етил (-СН 2 -СН 3), пропил (-СН 2 -СН 2 -СН 3 ) і т.д.
Назва заступника формується заміною суфікса -ан на суфікс - мулу назві відповідного алкану.
3. Формування назви. На початку назви вказують цифри - номери атомів вуглецю, у яких перебувають заступники. Якщо при цьому атомі знаходяться декілька заступників, то відповідний номер у назві повторюється двічі через кому (2,2-). Після номера через дефіс вказують кількість заступників ( ді- два, три- три, тетра- чотири, пента- п'ять) та назва заступника (метил, етил, пропил). Потім без пробілів та дефісів – назва головного ланцюга. Головний ланцюг називається як вуглеводень - член гомологічного ряду метану ( метанСН 4 , етанЗ 2 Н 6 , пропан C 3 H 8 З 4 Н 10, пентанЗ 5 Н 12 , гексанЗ 6 Н 14 , гептан C 7 H 16, октан C 8 H 18, нонанЗ 9 Н 20, деканЗ 10 Н 22).

Фізичні властивості алканів

Перші чотири представники гомологічного ряду метану – гази. Найпростіший з них - метан - газ без кольору, смаку та запаху (запах «газу», відчувши який, треба дзвонити 04, визначається запахом меркаптанів - сірковмісних сполук, що спеціально додаються до метану, що використовується в побутових та промислових газових приладах для того, щоб люди , що знаходяться поряд з ними, могли за запахом визначити витік).
Вуглеводні складу від 4 Н 12 до 15 Н 32 - рідини; Тяжкі вуглеводні - тверді речовини. Температури кипіння та плавлення алканів поступово збільшуються із зростанням довжини вуглецевого ланцюга. Усі вуглеводні погано розчиняються у воді, рідкі вуглеводні є поширеними органічними розчинниками.

Хімічні властивості алканів

Реакція заміщення.
Найбільш характерними для алканів є реакції вільнорадикального заміщення, в ході якого атом водню заміщається на атом галогену або групу. Наведемо рівняння характерних реакцій галогенування:


У разі надлишку галогену хлорування може піти далі, аж до повного заміщення всіх атомів водню на хлор:

Отримані речовини широко використовуються як розчинники та вихідні речовини в органічних синтезах.
Реакція дегідрування(відщеплення водню).
У ході пропускання алканів над каталізатором (Pt, Ni, А1 2 0 3 , Сг 2 0 3) при високій температурі (400-600 ° С) відбувається відщеплення молекули водню та утворення алкену:


Реакції, що супроводжуються руйнуванням вуглецевого ланцюга.
Усі граничні вуглеводні горять з утворенням вуглекислого газу та води. Газоподібні вуглеводні, змішані з повітрям у певних співвідношеннях, можуть вибухати.
1. Горіння граничних вуглеводнів- це вільнорадикальна екзотермічна реакція, яка має дуже велике значення при використанні алканів як паливо:

У загальному вигляді реакцію горіння алканів можна записати так:

2. Термічне розщеплення вуглеводнів.

Процес протікає за вільнорадикальним механізмом. Підвищення температури призводить до гомолітичного розриву вуглець-вуглецевого зв'язку та утворення вільних радикалів.

Ці радикали взаємодіють між собою, обмінюючись атомом водню, з утворенням молекули алкану та молекули алкену:

Реакції термічного розщеплення лежать в основі промислового процесу – крекінгу вуглеводнів. Цей процес є найважливішою стадією переробки нафти.

3. Піроліз. При нагріванні метану до температури 1000 ° С починається піроліз метану - розкладання на прості речовини:

При нагріванні до температури 1500 °С можливе утворення ацетилену:

4. Ізомеризація. При нагріванні лінійних вуглеводнів з каталізатором ізомеризації (хлоридом алюмінію) відбувається утворення речовин із розгалуженим вуглецевим скелетом:

5. Ароматизація. Алкани з шістьма або більше вуглецевими атомами в ланцюгу в присутності каталізатора циклізуються з утворенням бензолу та його похідних:

Алкани вступають у реакції, що протікають за вільнорадикальним механізмом, тому що всі атоми вуглецю в молекулах алканів знаходяться в стані sp 3 -гібридизації. Молекули цих речовин побудовані за допомогою ковалентних неполярних С-С (вуглець - вуглець) зв'язків та слабополярних С-Н (вуглець - водень) зв'язків. У них немає ділянок з підвищеною та зі зниженою електронною щільністю, легко поляризованих зв'язків, тобто таких зв'язків, електронна щільність у яких може зміщуватися під дією зовнішніх факторів (електростатичних полів іонів). Отже, алкани не реагуватимуть із зарядженими частинками, тому що зв'язки в молекулах алканів не розриваються за гетеролітичним механізмом.

Подібні публікації