Электрические цепи. Электродвижущая сила. Формулы, законы, правила, примеры по тоэ Что такое электродвижущая сила источника тока

ЭДС (ε ) - отношение работы сторонних сил по разделению зарядов к величине этого заряда, иначе, способность данного источника давать необходимое количество зарядов необходимой энергии.

- ЭДС.
ЭДС не является силой в Ньютоновом смысле (неудачное название величины, сохраненное как дань традиции).
ε i возникает при изменении магнитного потока Ф , пронизывающего контур.

Дополнительно см. презентацию "Электромагнитная индукция" , а также видеофильмы "Электромагнитная индукция ", "Опыт Фарадея ", мультфильмы "Электромагнитная индукция ", "Вращение рамки в магнитном поле (генератор) "

- ЭДС индукции.

- ЭДС индукции при движении одного из проводников контура (так, чтобы менялся Ф). В этом случае проводник длиной l , движущийся со скоростью v становится источником тока.

- ЭДС индукции в контуре, вращающемся в магнитном поле со скоростью ω.

Другие формулы, где встречается ЭДС:

- закон Ома для полной цепи. В замкнутой цепи ЭДС рождает электрический ток I.

Направление индукционного тока определяют по правилам:
- правило Ленца - возникающий в замкнутом контуре индукционный ток противо действует тому изменению магнитного потока, которым вызван данный ток;
- для проводника, движущегося в магнитном поле, иногда проще воспользоваться правилом правой руки - если расположить раскрытую ладонь правой руки так, чтобу в нее входили силовые линии магнитного поля В , а большой палец , отставленный в сторону указывал направление скорости v , то четыре пальца руки укажут направление индукционного тока I .

- ЭДС самоиндукции при изменении тока в проводнике.

Если замкнуть между собой полюса заряженного конденсатора, то под влиянием накопленного между его обкладками, во внешней цепи конденсатора в направлении от положительного полюса к отрицательному начинается движение носителей заряда - электронов.

Однако в процессе разряда поле, действующее на движущиеся заряженные частицы, быстро ослабевает до полного исчезновения. Поэтому возникшее в цепи разряда протекание электрического тока имеет кратковременный характер и процесс быстро затухает.

Для длительного поддержания тока в проводящей цепи используются устройства, неточно называемые в быту (в строго физическом смысле это не так). Чаще всего такими источниками служат химические батареи.

Вследствие происходящих в них электрохимических процессов на их клеммах происходит накопление разноименных Силы не электростатической природы, под действием которых осуществляется подобное распределение зарядов, называют сторонними силами.

Уяснить природу понятия ЭДС источника тока поможет рассмотрение следующего примера.

Представим себе проводник, находящийся в электрическом поле, как показано ниже на рисунке, то есть таким образом, что внутри него также существует электрическое поле.

Известно, что под воздействием этого поля в проводнике начинает протекать электрический ток. Теперь возникает вопрос о том, что происходит с носителями заряда, когда они достигают конца проводника, и будет ли этот ток оставаться неизменным с течением времени.

Мы можем легко сделать вывод, что при разомкной цепи в результате влияния электрического поля заряды будут накапливаться на концах проводника. В связи с этим не будет оставаться постоянным и движение электронов в проводнике будет очень кратковременным, как показано ниже на рисунке.

Таким образом, для того, чтобы поддерживать в проводящей цепи постоянное протекание тока, эта цепь должна быть замкнута, т.е. иметь форму петли. Однако для поддержания тока даже это условие не является достаточным, так как заряд всегда движется в сторону меньшего потенциала, а электрическое поле всегда делает положительную работу над зарядом.

Теперь после путешествия по замкнутой цепи, когда заряд возвращается к исходной точке, где он начал свой путь, потенциал в этой точке должен быть таким же, каким он был в начале движения. Однако протекание тока всегда связано с потерей потенциальной энергии.

Следовательно, нам необходим некий внешний источник в цепи, на клеммах которого поддерживается разность потенциалов, увеличивающая энергию движения электрических зарядов.

Такой источник позволяет осуществить путешествие заряда от более низкого потенциала к более высокому в направлении, противоположном движению электронов под действием электростатической силы, пытающейся протолкнуть заряд от более высокого потенциала к более низкому.

Эту силу, заставляющую заряд двигаться от более низкого к более высокому потенциалу, принято называть источника тока - это физический параметр, который характеризует работу, затраченную на перемещение зарядов внутри источника сторонними силами.

В качестве устройств, обеспечивающих ЭДС источника тока, как уже упоминалось, используются аккумуляторы, а также генераторы, термоэлементы и т.д.

Теперь мы знаем, что за счет своей внутренней ЭДС обеспечивает разность потенциалов между выводами источника, способствуя непрерывному перемещению электронов в направлении, противоположном действию электростатической силы.

ЭДС источника тока, формула которой приведена ниже, как и разность потенциалов выражается в вольтах:

E = A ст /Δq,

где А ст - работа сторонних сил, Δq - заряд, перемещенный внутри источника.


Для поддержаниязаданного значения электрического тока в проводнике требуется какой-то внешний источник энергии, который все время обеспечивал бы нужную разность потенциалов на концах этого проводника. Такими источниками энергии являются так называемые источники электрического тока, обладающие какой-то заданной электродвижущей силой , которая способна создать и длительное время поддерживать разность потенциалов.

Электродвижущая сила или сокращенно ЭДС обозначается латинской буквой Е . Единицей измерения является вольт . Таким образом, чтобы получить непрерывное движение электрического тока в проводнике, нужна электродвижущая сила, т. е. требуется источник электрического тока.

Историческая справка . Первым подобным источником тока в электротехнике являлся "вольтов столб", который был сделан из нескольких медных и цинковых кружков, проложенных коровьей кожей, смоченной в слабом растворе кислоты. Таким образом, самым простым способом получения электродвижущей силы считается химическое взаимодействие ряда веществ и материалов, в результате чего химическая энергия преобразуется в электрическую энергию. Источники питания, в которых подобным методом генерируется электродвижущая сила ЭДС, получили название химических источников тока.

Сегодня химические источники питания - батарейки и все возможные виды аккумуляторов - получили огромное распространение в электронике и электротехнике, а также электроэнергетике.

Также распространены и различные виды генераторов, которые в роли единственного источника, способны запитать электрической энергией промышленные предприятия, дать освещение в города, на фунционирование систем железных дорог, трамваев и метро.

ЭДС действует совершенно одинаково как на химические источники, так и на генераторы. Ее действие заключается в создании разности потенциалов на каждом из зажимов источника питания и поддержании ее в течение всего необходимого времени. Зажимы источника питания называют полюсами. На одном из полюсов всегда создается нехватка электронов, т.е. такой полюс имеет положительный заряд и маркируется «+ », а на другом наоборот создается повышенная концентрация свободных электронов, т.е. этот полюс имеет отрицательный заряд и маркируется знаком « - ».

Источники ЭДС применяются для подключения различных приборов и устройств, являющихся потребителями электрической энергии. С помощью проводов потребители подключаются к полюсам источников тока, так что получается замкнутая электрическая цепь. Разность потенциалов, возникшая в замкнутой электроцепи получило название и обозначают латинской буквой «U». Единица измерения напряжения один вольт . Например, запись U=12 В говорит о том, что напряжение источника ЭДС составляет 12 В.

Для того, чтобы измерить напряжение или ЭДС применяют специальный измерительный прибор - .

При необходимости осуществить правильные измерения ЭДС или напряжения источника питания, вольтметр подсоединяют напрямую к полюсам. При разомкнутой электрической цепи вольтметр будет показывать ЭДС. При замкнутой цепи вольтметр выведит на дисплей значение напряжение на каждом зажиме источника питания. PS: Источник тока всегда развивает большую ЭДС, чем напряжение на зажимах.

Видео урок: ЭДС

Видео урок: Электродвижущая сила от учителя физики

Напряжение на каждом из зажимов источника тока меньше электродвижущей силы на значение величины падения напряжения, имеющее место быть на внутреннем сопротивлении источника питания:


Идеальный источник

У идеальных источников, напряжение на зажимах не зависит от величины потребляемого тока.

Все источники электродвижущей силы обладают характеризующими их параметрами: напряжение холостого хода U хх , ток короткого замыкания I кз и внутреннее сопротивление (для источника постоянного тока R вн ). U хх – это напряжение при токе источника равным нулю. У идеального источника при любом токе U хх =0 . I кз – это ток при напряжении равном нулю. У идеального источника напряжения он бесконечен I кз = ∞ . Внутреннее сопротивление определяется из соотношений . Так как напряжение у идеального источника напряжения постоянно при любом токе ΔU = 0, то его внутреннее сопротивление также имеет нулевые значения.

R вн =ΔU / ΔI = 0;

При положительном напряжении и токе источник шлет свою электрическую энергию в эцепь и работает в режиме генератора. При противоположном движении тока – источник принимает электрическую энергию из цепи и работает в режиме приёмника.

В случае идеального источника тока егот значение, не зависит от велечины напряжения на его зажимах: I = const .

Так как, ток у идеального источника тока неизменен ΔI = 0 , то он имеет внутреннее сопротивление, равное бесконечности.

R вн =ΔU / ΔI = ∞

При положительном напряжении и токе источник шлет в цепь энергию и работает в режиме генератора. При обратном направлении он работает в режиме приёмника.

Реальный источник электродвижущей силы

У реального источника электродвижущей силы напряжение на зажимах снижается при увеличении тока. Такой ВАХ соответствует уравнение для определения напряжения при любом значении токе.

U = U xx - R вн ×I,

Где , вычисляется по формуле

R вн =ΔU / Δ I≠ 0

Его также можно вычислить и через U хх и I кз

R вн =U хх / II кз

Самоиндукция. ЭДС самоиндукции

При подсоединении источника тока в любую замкнутую цепь площадь, ограниченная этой цепью, начинает пронизываться внешними магнитными силовыми линиями. Каждая силовая линия, извне, пересекая проводник, наводя в нем ЭДС самоиндукции.

>>Физика: Электродвижущая сила

Любой источник тока характеризуется электродвижущей силой, или, сокращенно, ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит?
Соедините проводником два металлических шарика, несущих заряды противоположных знаков. Под влиянием электрического поля этих зарядов в проводнике возникает электрический ток (рис.15.7 ). Но этот ток будет очень кратковременным. Заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет.
Сторонние силы. Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство (источник тока ), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис.15.8 ). Одно лишь электрическое поле заряженных частиц (кулоновское поле ) не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами.
Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет еще очевиднее, если обратиться к закону сохранения энергии. Электростатическое поле потенциально. Работа этого поля при перемещении в нем заряженных частиц вдоль замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии - проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий ее в цепь. В нем, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы. Работа этих сил вдоль замкнутого контура должна быть отлична от нуля. Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают ее затем проводникам электрической цепи.
Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д.
При замыкании цепи создается электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис.15.8 ).
Природа сторонних сил. Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы - это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике.
В гальваническом элементе, например элементе Вольта, действуют химические силы. Элемент Вольта состоит из цинкового и медного электродов, помещенных в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте. В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток в замкнутой электрической цепи.
Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращенно ЭДС).
Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к величине этого заряда :

Электродвижущую силу, как и напряжение, выражают в вольтах.
Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке. Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого источника равна нулю.
Теперь вы знаете, что такое ЭДС. Если на батарейке написано 1,5 В, то это означает, что сторонние силы (химические в данном случае) совершают работу 1,5 Дж при перемещении заряда в 1 Кл от одного полюса батарейки к другому. Постоянный ток не может существовать в замкнутой цепи, если в ней не действуют сторонние силы, т. е. нет ЭДС.

???
1. Почему электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный электрический ток в цепи?
2. Какие силы принято называть сторонними?
3. Что называют электродвижущей силой?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Онлайн библиотека с учебниками и книгами по физике , планы-конспекты уроков по всем предметам , задания по физике для 10 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

ЭДС. Численно электродвижущая сила измеряется работой, совершаемой источником электрической энергии при переносе единичного положительного заряда по всей замкнутой цепи. Если источник энергии, совершая работу A , обеспечивает перенос по всей замкнутой цепи заряда q , то его электродвижущая сила (Е ) будет равна

За единицу измерения электродвижущей силы в системе СИ принимается вольт (в). Источник электрической энергии обладает эдс в 1 вольт, если при перемещении по всей замкнутой цепи заряда в 1 кулон совершается работа, равная 1 джоулю. Физическая природа электродвижущих сил в разных источниках весьма различна .

Самоиндукция - возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру. При изменении тока I в контуре пропорционально меняется и магнитный поток B через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС E . Это явление и называется самоиндукцией.

Понятие родственно понятию взаимоиндукции, являясь его частным случаем.

Мощность. Мощность – это работа производимая единицу времени.Мощность-это работа производимая в еденицу времени, т.е для переноса заряда в эл. цепи или в замкнутой затрачивается энергия, которая равна А=U*Q так как кол-во электричества равна произведению силы тока, то Q=I*t отсюда следует что A=U*I*t. P=A/t=U*Q/t=U*I=I*t*R=P=U*I(И)

1Вт=1000мВ, 1кВт=1000В, Pr=Pп+Po-формула баланса мощности. Pr-мощность генератора(ЭДС)

Pr=Е*I,Pп=I*U полезная мощность, т.е мощность которая расходуется без потерь. Po=I^2*R-теряемая мощность. Для того что бы цепь функционировала необходимо соблюдать баланс мощности в эл.цепи.

12.Закон Ома для участка цепи.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:
I = U / R ;

1)U=I*R, 2)R=U/R

13.Закон Ома для полной цепи.

Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

ЭДС источника напряжения(В), - сила тока в цепи (А), - сопротивление всех внешних элементов цепи(Ом), - внутреннее сопротивление источника напряжения(Ом) .1)E=I(R+r)? 2)R+r=E/I

14.Последовательное, параллельное соединение резисторов, эквивалентное сопротивление. Распределение токов и напряжения.

При последовательном соединении нескольких резисторов конец первого резистора соединяют с началом второго, конец второго - с началом третьего и т. д. При таком соединении по всем элементам последовательной цепи проходит
один и тот же ток I.

Uэ=U1+U2+U3. Следовательно, напряжение U на зажимах источника равно сумме напряжений на каждом из последовательно включенных резисторов.

Rэ=R1+R2+R3, Iэ=I1=I2=I3, Uэ=U1+U2+U3.

При последовательном соединении сопротивление цепи увеличивается.

Параллельное соединение резисторов. Параллельным соединением сопротивлений называется такое соединение, при котором к одному зажиму источника подключаются начала сопротивлений, а к другому зажиму - концы.

Общее сопротивление параллельно включенных сопротивлений определяется по формуле

Общее сопротивление параллельно включенных сопротивлений всегда меньше наименьшего сопротивления, входящего в данное соединение.

при параллельном соединении сопротивлений напряжения на них равны между собой. Uэ=U1=U2=U3 В цепи притекает ток I, а токи I 1 , I 2, I 3 утекают из нее. Так как движущиеся электрические заряды не скапливаются в точке, то очевидно, что суммарный заряд, притекающий к точке разветвления, равен суммарному заряду утекающему от нее:Iэ=I1+I2+I3 Следовательно, третье свойство параллельного соединения может сформулирована так: Величина тока в не разветвленной части цепи равна сумме токов в параллельных ветвях. Для двух парал.резисторов:

Похожие публикации