Историческая теология. Историческая геология: основы науки, ученые-основатели, обзор литературы. Историческая геология с основами палеонтологии и астрономии

ПРЕДИСЛОВИЕ................................................................................................................................. 3

ВВЕДЕНИЕ......................................................................................................................................... 4

ЧАСТЬ I ОСНОВНЫЕ ПРИНЦИПЫ И МЕТОДЫ ИСТОРИЧЕСКОЙ ГЕОЛОГИИ 7

ГЛАВА 1. ПРЕДМЕТ И ЗАДАЧИ ИСТОРИЧЕСКОЙ ГЕОЛОГИИ.............................. 7

ГЛАВА 2. СТРАТИГРАФИЯ И ГЕОХРОНОЛОГИЯ........................................................ 14

2.1. ТИПЫ СТРАТИГРАФИЧЕСКИХ ЕДИНИЦ И КРИТЕРИИ ИХ ВЫДЕЛЕНИЯ 16

2.2. ОТНОСИТЕЛЬНАЯ ГЕОХРОНОЛОГИЯ............................................................. 18

2.3. АБСОЛЮТНАЯ ГЕОХРОНОЛОГИЯ.................................................................... 36

2.4. МЕЖДУНАРОДНАЯ ГЕОХРОНОЛОГИЧЕСКАЯ ШКАЛА........................... 41

2.5. ЭТАЛОНЫ СТРАТИГРАФИЧЕСКИХ ПОДРАЗДЕЛЕНИИ............................ 42

ГЛАВА 3. ОСНОВНЫЕ МЕТОДЫ ИСТОРИКО-ГЕОЛОГИЧЕСКОГО АНАЛИЗА 47

3.1. ФАЦИАЛЬНЫЙ МЕТОД.......................................................................................... 48

3.2. АНАЛИЗ ПАЛЕОНТОЛОГИЧЕСКОГО МАТЕРИАЛА (БИОФАЦИАЛЬНЫЙ И ПАЛЕОЭКОЛОГИЧЕСКИИ АНАЛИЗЫ)........................................................................................................................... 54

33. ПАЛЕОГЕОГРАФИЧЕСКИЕ МЕТОДЫ................................................................ 57

3.4. ФОРМАЦИОННЫЙ АНАЛИЗ................................................................................. 77

3.5. ПАЛЕОГЕОГРАФИЧЕСКИЕ КАРТЫ.................................................................... 79

ЧАСТЬ II. ДРЕВНЕЙШАЯ ИСТОРИЯ ЗЕМЛИ................................................................. 82

ГЛАВА 4. ВОЗНИКНОВЕНИЕ ЗЕМЛИ И ДОАРХЕЙСКАЯ ИСТОРИЯ.................. 82

4.1. ОБРАЗОВАНИЕ СОЛНЕЧНОЙ СИСТЕМЫ....................................................... 82

4.2. ОБРАЗОВАНИЕ ПЛАНЕТ, КОНДЕНСАЦИЯ И аккумуляция МЕЖЗВЕЗДНОГО ВЕЩЕСТВА 84

4.3. ДОАРХЕЙСКИЙ (ГАДЕЙСКИЙ) ЭТАП РАЗВИТИЯ ЗЕМЛИ........................ 86

ГЛАВА 5. АРХЕЙСКАЯ ИСТОРИЯ..................................................................................... 88

5.1. ОБЩЕЕ РАСЧЛЕНЕНИЕ ДОКЕМБРИЯ.............................................................. 88

5.2 РАННИЙ АРХЕЙ (4,0-3,5 млрд лет)....................................................................... 90

5.3. СРЕДНИЙ И ПОЗДНИЙ АРХЕЙ (3,5-2,5 млрд лет).......................................... 98

5.4. ГЕОЛОГИЧЕСКИЕ ОБСТАНОВКИ В АРХЕЕ................................................. 106

5.5. ЗАРОЖДЕНИЕ ЖИЗНИ......................................................................................... 108

5.6. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ................................................................................ 109

6.2. СРЕДА ОСАДКОНАКОПЛЕНИЯ........................................................................ 121

6.3. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ................................................................................ 122

ГЛАВА 7. ПОЗДНИЙ ПРОТЕРОЗОЙ................................................................................ 123

7.1. СТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ И СТРАТОТИПЫ..................... 123

7.2. ОРГАНИЧЕСКИЙ МИР.......................................................................................... 129

7.3. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧЕСКИЕ УСЛОВИЯ.. 129

7.4. КЛИМАТИЧЕСКАЯ ЗОНАЛЬНОСТЬ............................................................... 141

7. 5. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ............................................................................... 142

ЧАСТЬ III ФАНЕРОЗОЙСКАЯ ИСТОРИЯ ЗЕМЛИ...................................................... 145

ПАЛЕОЗОЙСКАЯ ЭРА............................................................................................................... 145

ГЛАВА 8. ВЕНДСКИЙ ПЕРИОД......................................................................................... 149

8.1 О ПОЛОЖЕНИИ ВЕНДСКОЙ СИСТЕМЫ В ОБЩЕЙ ХРОНОСТРАТИГРАФИЧЕСКОИ ШКАЛЕ 149

8.2. СТРАТОТИПЫ ВЕНДСКОЙ СИСТЕМЫ.......................................................... 150

8.3. ОРГАНИЧЕСКИЙ МИР.......................................................................................... 155

8.4. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧЕСКИЕ УСЛОВИЯ.. 156

8.5 КЛИМАТИЧЕСКАЯ ЗОНАЛЬНОСТЬ................................................................ 162

ГЛАВА 9. КЕМБРИЙСКИЙ ПЕРИОД............................................................................... 166

9.1. СТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ И СТРАТОТИПЫ..................... 166

9.2. ОРГАНИЧЕСКИЙ МИР.......................................................................................... 170

9.3. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧЕСКИЕ УСЛОВИЯ.. 173

9.4: КЛИМАТИЧЕСКАЯ И БИОГЕОГРАФИЧЕСКАЯ ЗОНАЛЬНОСТЬ......... 180

9.5. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ................................................................................ 185

ГЛАВА 10. ОРДОВИКСКИЙ ПЕРИОД.............................................................................. 185

10.1. СТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ И СТРАТОТИПЫ.................. 186

10.2. ОРГАНИЧЕСКИЙ МИР........................................................................................ 187

103. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧЕСКИЕ УСЛОВИЯ. 191

10.4. КЛИМАТИЧЕСКАЯ И БИОГЕОГРАФИЧЕСКАЯ ЗОНАЛЬНОСТЬ....... 201

10.5. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ............................................................................. 204

ГЛАВА 11. СИЛУРИЙСКИЙ ПЕРИОД............................................................................. 205

11.1. СТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ И СТРАТОТИПЫ.................. 205

11.2. ОРГАНИЧЕСКИЙ МИР........................................................................................ 207

11.3. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧЕСКИЕ УСЛОВИЯ 209

11.4. КЛИМАТИЧЕСКАЯ И БИОГЕОГРАФИЧЕСКАЯ ЗОНАЛЬНОСТЬ....... 216

11.5. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ............................................................................. 219

ГЛАВА 12. ДЕВОНСКИЙ ПЕРИОД................................................................................... 219

12.1. СТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ И СТРАТОТИПЫ.................. 219

12.2. ОРГАНИЧЕСКИЙ МИР........................................................................................ 221

12.3. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧЕСКИЕ УСЛОВИЯ 224

12.4. КЛИМАТИЧЕСКАЯ И БИОГЕОГРАФИЧЕСКАЯ ЗОНАЛЬНОСТЬ....... 236

12.5. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ............................................................................. 239

ГЛАВА 13. КАМЕННОУГОЛЬНЫЙ ПЕРИОД.............................................................. 240

13.3 СТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ И СТРАТОТИПЫ................... 240

13.2. ОРГАНИЧЕСКИЙ МИР........................................................................................ 246

13.4. КЛИМАТИЧЕСКАЯ И БИОГЕОГРАФИЧЕСКАЯ ЗОНАЛЬНОСТЬ....... 263

135. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ.............................................................................. 269

ГЛАВА 14. ПЕРМСКИЙ ПЕРИОД...................................................................................... 270

14.2. ОРГАНИЧЕСКИЙ МИР........................................................................................ 271

14.3. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧЕСКИЕ УСЛОВИЯ 274

14.5. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ............................................................................. 289

МЕЗОЗОЙСКАЯ ЭРА.................................................................................................................. 290

ГЛАВА 15. ТРИАСОВЫЙ ПЕРИОД................................................................................... 290

15.1. СТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ И СТРАТОТИПЫ.................. 290

15.2. ОРГАНИЧЕСКИЙ МИР........................................................................................ 292

15.3. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧЕСКИЕ УСЛОВИЯ 294

15.4. КЛИМАТИЧЕСКАЯ И БИОГЕОГРАФИЧЕСКАЯ ЗОНАЛЬНОСТЬ....... 303

15.5. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ............................................................................. 305

ГЛАВА 16. ЮРСКИЙ ПЕРИОД........................................................................................... 307

16.1. СТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ И СТРАТОТИПЫ.................. 307

16.2. ОРГАНИЧЕСКИЙ МИР........................................................................................ 312

163. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧЕСКИЕ УСЛОВИЯ. 315

16.4. КЛИМАТИЧЕСКАЯ И БИОГЕОГРАФИЧЕСКАЯ ЗОНАЛЬНОСТЬ....... 325

165. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ.............................................................................. 331

ГЛАВА 17. МЕЛОВОЙ ПЕРИОД......................................................................................... 331

17.1. СТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ И СТРАТОТИПЫ.................. 332

17.2. ОРГАНИЧЕСКИЙ МИР........................................................................................ 335

17.3. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧЕСКИЕ УСЛОВИЯ 341

17.4. ЭВОЛЮЦИЯ И ВЫМИРАНИЕ ФАУНЫ В МЕЛОВОМ ПЕРИОДЕ......... 356

175. КЛИМАТИЧЕСКАЯ И БИОГЕОГРАФИЧЕСКАЯ ЗОНАЛЬНОСТЬ........ 358

17.6 ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ.............................................................................. 363

КАЙНОЗОЙСКАЯ ЭРА............................................................................................................... 364

18.2 ОРГАНИЧЕСКИЙ МИР......................................................................................... 368

18.3. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧССКИЕ УСЛОВИЯ 369

18.4. КЛИМАТИЧЕСКАЯ И БИОГЕОГРАФИЧЕСКАЯ ЗОНАЛЬНОСТЬ....... 383

18.5. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ............................................................................. 388

ГЛАВА 19. НЕОГЕНОВЫЙ ПЕРИОД............................................................................... 389

19.1 СТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ И СТРАТОТИПЫ................... 389

19.2. ОРГАНИЧЕСКИЙ МИР........................................................................................ 391

19.3. ПАЛЕОТЕКТОНИЧЕСКИЕ И ПАЛЕОГЕОГРАФИЧЕСКИЕ УСЛОВИЯ 393

19.4. КЛИМАТИЧЕСКАЯ И БИОГЕОГРАФИЧЕСКАЯ ЗОНАЛЬНОСТЬ....... 407

19.5 ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ.............................................................................. 410

ГЛАВА 20. ЧЕТВЕРТИЧНЫЙ (АНТРОПОГЕНОВЫИ) ПЕРИОД.......................... 412

20.1. СТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ.................................................... 412

20.2. ОРГАНИЧЕСКИЙ МИР........................................................................................ 417

20.3. ПРИРОДНЫЕ УСЛОВИЯ..................................................................................... 420

20.4. ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ............................................................................. 427

ЗАКЛЮЧЕНИЕ.............................................................................................................................. 428

ЛИТЕРАТУРА................................................................................................................................ 438

ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ


Учебное пособие


ПРЕДИСЛОВИЕ

Историческая геология - один из фундаментальных предметов программы подготовки специ­алистов по направлению "Геология". Для эффективного усвоения материала требуется обеспече­ние студентов достаточным количеством учебно-методической литературы. За последние полтора десятилетия ведущими коллективами страны выпущены три известных учебника, широко исполь­зуемых в большинстве вузов. Это учебник коллектива кафедры исторической и динамической гео­логии Санкт-Петербургского государственного горного института (ныне СПГГУ) "Историческая геология с основами палеонтологии" 1985 года выпуска. Авторы - Е.В. Владимирская, А.Х. Ка-гарманов, Н.Я. Спасский и др. В 1986 году опубликован учебник "Историческая геология" Г.И.Немкова, Е.С. Левицкого, И.А. Гречишниковой- и др., подготовленный на кафедре региональ­ной геологии и палеонтологии Московского геологоразведочного института (ныне МГГА). Учены­ми МГУ в 1997 г. выпущен учебник "Историческая геология"; авторы - В.Е. Хаин, Н.В. Короновский и Н.А. Ясаманов. Все эти учебники использованы при подготовке данного пособия по истори­ческой геологии. Упомянем также вышедшую в 1998 г. "Историческую геологию с основами пале­онтологии" (автор - М.Д. Парфенова). Пособие подготовлено на кафедре общей и исторической геологии Томского политехнического университета. Однако дефицит учебных пособий по этому курсу не ликвидирован, поскольку первые два учебника выпущены довольно давно, а два после­дних имеют небольшой тираж и уже стали библиографической редкостью. Возникла необходи­мость подготовить новое учебное пособие, доступное для наших студентов и учитывающее си­бирский оригинальный материал.

Нужно подчеркнуть также следующее обстоятельство. В известных учебниках по историчес­кой геологии по-разному трактуется развитие Земли и уделяется неодинаковое внимание вопро­сам новой глобальной тектоники. Если в учебниках Е.В.Владимирской и др. (1985), Г.И.Немкова и др. (1986) вопросы тектоники литосферных плит почти не рассматриваются или занимают весьма скромное место, то последний учебник В.Е.Хаина, Н.В.Короновского и Н.А.Ясаманова (1997) це­ликом базируется на этой концепции.

На взгляд авторов, нужно критически относится к гипотезе мобилизма, так как многие фак­тические данные невозможно вместить в рамки только плитной тектоники. Особенные затрудне­ния испытывает концепция литосферных плит применительно к палеозойскому и докембрийско-му этапам земной истории. Основным противоречием являются глубокие корни континентов, не позволяющие им свободно перемещаться по астеносферному слою, а также присутствие кольце­вых структур и отсутствие больших скоплений осадочного материала в зонах субдукции. На наш взгляд, оправданным является применение пульсационной гипотезы, в основе которой лежат чере­дования эпох сжатия и расширения Земли, обусловленных космическими причинами. По-видимо­му, с эпохами расширения связано появление рифтовых зон и расхождение континентов. После работ В.А.Обручева и М.А.Усова эти идеи в последние годы особенно активно развиваются Е.Е.Милановским и его сторонниками; этим идеям отдается предпочтение в данном учебном по­собии. Концепция новой исторической геологии, по-видимому, должна учитывать лишь ограни­ченный спрединг при пульсационном развитии Земли, цикличность и эволюцию всех геологичес­ких процессов, в том числе и наблюдаемую на палеонтологическом материале эволюцию органи­ческого мира.


Предлагаемое учебное пособие имеет сопоставимый с упомянутыми выше учебниками объём и охватывает все разделы курса, предусмотренные программой. Одним из нововведений в данном учебном пособии является совмещение сведений по палеогеографии разных периодов фа-нерозоя с наиболее характерными разрезами, на которых показано также распространение ископа­емых остатков. За основу палеогеографических реконструкций взяты известные схемы Н.М.Стра­хова, дополненные авторами. Эти обобщенные схемы впервые даются в цветном варианте, что должно значительно повысить восприятие излагаемого материала. Наряду с этими схемами, не учитывающими концепцию новой глобальной тектоники, в учебном пособии помещены плейттек-тонические реконструкции древних континентов, заимствованные нами из книги J.Monroe & R.Wicander, 1994. Таблицы характерных организмов различных систем составлены по примеру та­ковых из учебника Г.И.Немкова и др. (1986), дополнены сибирским материалом и максимально; приближены к коллекциям, имеющимся на кафедре палеонтологии и исторической геологии Том*-ского государственного университета.

Содержание учебника обсуждалось с коллегами по кафедре палеонтологии и исторической геологии ТГУ. Авторы благодарны доценту Н.И.Савиной за помощь в редактировании учебного пособия, профессору ТГУ А.И.Родыгину и доценту Г.М.Татьянину за ценные советы при чтении ряда глав, а также доценту МГУ Д.И.Панову, сделавшему важные критические замечания, что по­зволило улучшить содержание и структуру учебного пособия. Выражаем благодарность начальни­ку управления МПР России, заслуженному геологу России Л.В.Оганесяну и генеральному дирек­тору ЗАО "Геоинформмарк" Г.М.Гейшерику за содействие в выпуске учебного пособия к 300-ле 1 , тию горно-геологической службы России. Благодарим В.А.Коновалову, Т.Н.Афанасьеву и Е.С.Аб-дурахманову, участвовавших в компьютерном наборе текста, а также всех лиц, способствовавших опубликованию данной работы.


ВВЕДЕНИЕ

Историческая геология - синтетическая дисциплина, интегрирующая данные многих дру­гих геологических наук. Предметом изучения исторической геологии является Земля, точнее, ее верхняя твердая оболочка - земная кора. Цель исторической геологии - выявление процессов, происходивших в земной коре в течение геологического времени, выяснение закономерностей ее развития, воссоздание с наибольшей полнотой картин эволюции биосферы в прошлые геологи­ческие эпохи нашей планеты.

Основными документами, по которым реконструируется геологическая история развития ре­гиона, являются горные породы и заключенные в них ископаемые органические остатки, собран­ные геологами в процессе полевых работ. На этих материалах основываются сведения о геологи­ческих явлениях и эпизодах, происходивших в геологическом прошлом. Всестороннее изучение образцов горных пород в лабораториях, восстановление облика животных и растений, образа их жизни и взаимодействия с окружающей средой Позволяют расшифровать происходившие те или иные геологические события и реконструировать физико-географические условия, существовав-, шие на земной поверхности в прошлые геологические эпохи.

Историческая геология решает следующие основные задачи:

1. Изучение залегания слоев горных пород, восстановление хронологической последователь-
£ости их образования, определение относительного возраста. Породы, слагающие земную кору,
сформировались не сразу, а в какой-то последовательности; причем в один и тот же отрезок вре­
мени на разных участках земной поверхности возникали различные по составу и происхождению
породы. Эту задачу - изучение состава, места и времени образования пластов горных пород, а
также выявление их взаимоотношений и сопоставление (корреляцию) между собой - решает гер-
логическая дисциплина стратиграфия (от латинского stratum - слой и греческого grapho - пишу).
При этом стратиграфия в значительной степени использует данные литологии, палеонтологии,
структурной геологии, относительной и абсолютной геохронологии.

2. Анализ становления и развития жизни на Земле - прерогатива палеонтологии. Разделы па­
леонтологии: палеофаунистика и палеофлористика изучают совокупность соответственно живот­
ных и растений, обитавших в определённое время в разных климатических условиях, а также про­
исхождение и развитие фаун и флор во времени. Раздел палеобиогеография выявляет закономерно­
сти пространственного, а также временного распространения ископаемых животных и растений.

3. Восстановление физико-географических условий земной поверхности геологического про­
шлого, в частности, распределение суши и моря, рельефа суши и Мирового океана, глубин, соле­
ности, температур, плотности, динамики морских бассейнов, климата, биологических и геохими­
ческих условий - одна из самых трудных задач в исторической геологии. Она является основной
задачей науки палеогеографии, которая в прошлом веке выделилась из исторической геологии в
самостоятельную отрасль научных знаний. Палеогеографические исследования невозможно про­
водить без изучения вещественного состава, структурного и текстурного строения осадочных гор­
ных пород.

4. Восстановление истории тектонических движений. Разновозрастные и разномасштабные
следы тектонических движений в виде нарушений первичного залегания слоев горных пород и
геологических тел наблюдаются повсеместно на земной поверхности. Определением времени


проявления, характера, величины и направленности тех или иных тектонических движений зани­мается региональная геотектоника, а историю развития различных структурных элементов от­дельных участков и всей земной коры изучает историческая геотектоника.

5. Восстановление и объяснение истории вулканизма, плутонизма и метаморфизма. В основе
исследований лежит определение относительного и абсолютного возраста вулканогенно-осадоч- -
ных, магматических и метаморфических пород, а также установление первичной природы после­
дних. После этого выделяют области вулканической активности, выявляют и реконструируют ус­
ловия вулканизма и плутонизма, определяют геохимическую особенность мантийных потоков.
Это задачи геохимии и петрологии.

6. Выявление закономерностей размещения в земной коре полезных ископаемых - эту задачу
помогает решать раздел геологии учение о полезных ископаемых.

7. Установление строения и закономерностей развития земной коры. Это одна из важнейших
задач исторической геологии, которая не может быть решена без использования знаний из многих
дисциплин и направлений наук о Земле. Решению этой задачи помогают прежде всего региональ­
ная геология, региональная
и историческая геотектоника, геохимия, космическая геология, геофи­
зика, петрология
и другие науки.

Историческая геология на основе обобщения, анализа разнообразных фактов, на докумен­тальном материале воссоздает фрагменты эволюции земной коры и картины геологического про­шлого. Это, собственно, и есть ее главная задача.

Историческая геология использует главным образом данные по геологическому строенияг суши, занимающей только одну треть земной поверхности. Бурное развитие морской геологии заг последние два десятилетия дало нам новые сведения по геологии дна морей и океанов; эти мате­риалы помогают восстановить лишь сравнительно недавнюю историю развития океанической коры. Выявленные при этом закономерности вряд ли возможно интерполировать на более отда­лённые геологические зоны и эры (докембрий, палеозой). Восстановление геологической истории Земли во всей её полноте с использованием всей совокупности как прежних, так и новейших ме­тодов и закономерностей - задача исследователей наступающего XXI века.

Знание исторической геологии необходимо при изучении региональной геологии, рассматри­вающей геологическое строение отдельных регионов Земли как результат их геологической исто­рии. В то же время обобщение и анализ данных региональной геологии позволяют восстановить" историю Земли в целом и выявить закономерности ее развития в прошлые геологические эпохи.

Историческая геология как наука возникла на рубеже XVIII и XIX веков. Однако человече­ство давно интересовали вопросы происхождения горных пород и содержащихся в них окамене-лостей, пути преобразования земной поверхности. В трудах ученых Древнего Египта, Греции, Рима, Индии и Китая по этим проблемам есть немало интересных геологических наблюдений и идей, но им не придавалось особого значения вплоть до эпохи Возрождения.

В 1669 г. датский естествоиспытатель Нильс Стенсен (1638-1686), работавший в Италии и из­вестный в научных кругах под именем Николая Стенона, сформулировал шесть основных правил (постулатов) стратиграфии.

1. Слои Земли - результат осаждения в воде.

2. Слой, заключающий обломки другого слоя, образовался после него.

3. Всякий слой отложился позднее слоя, на котором залегает, и ранее того, который его пере­
крывает.

5. Слой должен иметь неопределенную протяженность и его можно прослеживать поперек
какой-либо долины.


6. Слой отлагался вначале горизонтально; если он наклонен, то он испытал какой-либо изгиб. Если другой слой залегает на наклонных слоях, то их изгиб произошел ранее отложения этого вто­рого слоя.

В этих основных положениях Стенона мы видим прежде всего начало таких наук, как стра­тиграфия и тектоника,

В середине XVIII в. появились работы Ж.Бюффона и И.Канта, в которых на основании кос­могонических представлений высказывались идеи об изменчивости и развитии MHpo3flaHHЈj о длительности истории Земли.

Наиболее правильное объяснение геологических явлений было дано в трудах гениального русского ученого М.В.Ломоносова (1711-1765). Он разделял геологические процессы на внутрен­ние и внешние и отводил ведущую роль внутренним причинам в образовании гор и впадин. М.В.Ломоносов фактически впервые применил принцип актуализма. Он ясно указывал, что изуче­ние современных геологических процессов позволяет понять прошлое Земли. Касаясь условий образования осадочных пород, в своем труде «О слоях земных» (1763) он писал: "...сии одна на другой лежащие разного рода материи (кои флецами называют) показывают, что произошли не в одно время; однако ж и вместе претерпели... перемены общие и особливые. Песчаные слои были прежде дно морское или реки великой".

Историческая геология возникла во второй половине XVIII в. и составляла единое целое со стра­тиграфией. Однако стратиграфические исследования были редки и носили разрозненный характер. Большой вклад в развитие этой науки внес итальянский ученый Д.Ардуино, создавший в 1760 г. пер­вую схему расчленения горных пород по возрасту. Благодаря исследованиям немецких геологов, осо­бенно А.Вернера (1750-1817), была разработана региональная стратиграфическая схема Центральной Германии и на ее основе реконструирована геологическая история развития Европы.

К концу XVIII в. накопилось много геологических сведений, но пока не был найден надеж­ный метод определения синхронности, одновозрастности отложений и, следовательно, вызвавших их процессов. Поэтому была невозможна историческая систематизация собранных сведений. Та­ким ключом явился палеонтологический (биостратиграфический) метод, основателем которого был английский инженер В.Смит (1769-1839). Правда, его предшественник французский аббат Жиро Сулави еще в 1779 г. установил последовательную смену комплексов ископаемых организ­мов в разрезе осадочных толщ Южной Франции и пришел к выводу, что хронологическая очеред­ность эпох господства различных комплексов морских животных соответствует последовательно­сти залегания и относительному возрасту вмещающих эту фауну слоев горных пород. Однако практическое значение ископаемых организмов для расчленения и корреляции осадочных толщ было показано В.Смитом, составившим на основе биостратиграфического метода первую шкалу вертикальной последовательности осадочных пород Англии.

Основателями палеонтологического метода наряду со В.Смитом являются французские уче­ные Ж.Кювье (1769-1832) и А.Броньяр (1801-1876). Проводя геологические исследования в одно и то же время, но независимо друг от друга, они пришли к одинаковым выводам, связанным с пос­ледовательностью залегания слоев и находящихся в них остатков ископаемой фауны, что дало возможность составить первые стратиграфические колонки, разрезы и геологические карты ряда районов Англии и Франции. На основе палеонтологического метода в XIX столетии было выделе­но большинство известных ныне геологических систем и составлены геологические карты. От­крытие нового метода способствовало быстрому становлению исторической геологии и знамено­вало собой начало "стратиграфического" этапа развития этой науки. В течение 20 лет XIX в. (:1822-1841 гг.), названных Б.С.Соколовым "героической эпохой" в развитии геологии, были уста­новлены почти все основные подразделения общей стратиграфической шкалы, что позволило сис­тематизировать обширный геологический материал в хронологической последовательности. Од­нако эти достижения прошли под знаком господства идей катастрофизма, божественных актов Творения, которыми объяснялась смена комплексов животных и растений в вертикальном разрезе.


Крупнейший французский ученый Ж.Кювье был не только одним из основателей палеонто­логического метода, но и автором теории катастроф, которая в свое время пользовалась широкой популярностью. На основании геологических наблюдений он показал, что некоторые группы организмов в течение геологического времени вымирали, но их место занимали новые. Его после­дователи Ж.Агассис (1807-1873), А.д"Орбиньи (1802-1857), Л.Эли де Бомон (1798-1874) и другие стали объяснять катастрофами не только вымирание организмов, но и многие другие события на земной поверхности. По их мнению, любые изменения залегания горных пород, рельефа, измене­ния ландшафтов или условий среды обитания, а также вымирание организмов были результатами разномасштабных катастрофических явлений, происходивших на земной поверхности. Позднее теория катастроф была подвергнута резкой критике выдающимися учеными XIX столетия Ж.Ламарком (1744-1829), Ч.Лайелем (1797-1875), Ч.Дарвином (1809-1882). Французский есте­ствоиспытатель Ж.Ламарк создал учение об эволюции органического мира и впервые провозгла­сил ее всеобщим законом живой природы. Английский геолог Ч.Лайель в своем труде "Основы геологии" доказывал, что крупные изменения на Земле происходили не в результате разрушитель­ных катастроф, а вследствие медленных, длительных геологических процессов. Познание исто­рии Земли Ч.Лайель предлагал начинать с изучения современных геологических процессов, счи­тая, что они являются "ключом к познанию геологических процессов прошлого". Это положение Чарльза Лайеля получило впоследствии название "принципа актуализма".

Сокрушительный удар катастрофизму был нанесен появлением труда Чарльза Дарвина "Про­исхождение видов путем естественного отбора" (1859). Его выводы о значении естественного от­бора в эволюции органического мира укрепили роль ископаемых органических остатков как доку­ментов истории жизни и как основы хронологического расчленения слоев горных пород. Большое значение в развитии исторической геологии имели также идеи Ч.Дарвина о неполноте геологичес­кой и палеонтологической летописи. Появление трудов Ч.Дарвина оказало большую поддержку учению эволюционистов, так как в них доказывалось, что органический мир преобразуется путем медленных эволюционных изменений.

По мнению В.М.Подобиной и Г.М.Татьянина (Эволюция.., 1997), в истории Земли под воздей­ствием преимущественно космического и тектонического факторов наблюдается постепенное ус­ложнение биоты с периодическим нарушением ее равновесия и равномерного развития. Со времен Ж.Кювье исследователи неоднократно отмечали, как одни организмы через определенные проме­жутки времени уступали место в экосистемах другим, более прогрессивным формам. Однако разви­тие подобных представлений на научной основе стало возможным только в XX в., с накоплением информации об органическом мире прошлых геологических эпох. Геохронологический фактор (гео­логическое время) в данном случае становится одним из ведущих. Прерывистый характер непре­рывного развития биоты есть неотъемлемая составная часть глобального процесса эволюции орга­низмов и определяется, как показали исследования многих ученых, обращением Земли вместе с Солнечной системой вокруг центра Галактики, прохождением различных секторов галактической орбиты и другими "космическими" причинами, их взаимодействием с внутренней энергией Земли.

У сложно организованных форм с половой дифференциацией наблюдается цикличность в развитии (становление, развитие и угасание), и такие организмы более подвержены вымиранию во время природных катастроф. Прогрессивная (магистральная) эволюция, на взгляд В.М.Подоби­ной и Г.М.Татьянина (1997), по-видимому, обусловлена, кроме естественного отбора по Ч.Дарви­ну, влиянием так называемых "катализаторов" (активные зоны, рифты и т.д.), способствовавших ускоренному мутационному процессу и быстрому развитию организмов, попадавших во время миграции в указанные зоны.

Исследуя фораминиферы фанерозоя, а также учитывая развитие других организмов по опуб­ликованным работам, В.М.Подобина и Г.М.Татьянин предполагают, что на эволюцию биоты ока­зали влияние следующие основные факторы:


1. Космический (обращение Земли вместе с Солнечной системой вокруг центра Галактики,
изменение величины солнечной радиации, падение астероидов, метеоритов, изменение эксцентри­
ситета земной орбиты, оси вращения Земли и др.).

2. Тектонический (орогенез, рифтогенез, образование глубоководных желобов, опусканий,
поднятий и др.).

3. Геохронологический (геологическое время).

С первыми двумя факторами взаимосвязаны следующие два фактора:

4. Палеогеографический (экосистемные перестройки: абиотические и биотические измене­
ния, взаимосвязь организмов).

5. Температурный (климатическая и вертикальная зональность: уменьшение температуры к
полюсам и с глубиной, повышение в отдельных местах температуры, связанной с эндогенными
процессами).

6. Миграционный фактор (имеет большое значение в мезозое и, особенно, кайнозое).

В течение геологического времени влияние перечисленных факторов на эволюцию организ­мов было неравнозначным. Как указывалось, действие первого и, как следствие, второго факторов преобладало на первых и последующих этапах развития биоты, затем началось влияние геохроно­логического и других факторов. Шестой фактор стал особенно ощущаться при появлении активно или пассивно перемещающихся нектонных, планктонных и некоторых бентосных организмов в результате возникновения более разнообразных климатических и других обстановок, что привело к ускоренной эволюции отдельных групп этих организмов.

Скорость эволюции представителей биоты поэтому не оставалась постоянной. На основании исследования некоторых отрядов фораминифер по скорости эволюции выделены три основные, группы, которые могут быть прослежены и среди других органических форм:

1) ускоренной эволюции (планктон, нектон и частично подвижный бентос); 2) умерентшй эволюции (подвижный бентос); 3) замедленной эволюции (медленно передвигающийся и сидячий бентос). В пределах каждой группы, в свою очередь, по скорости эволюции могут быть выделены соподчиненные подгруппы, отличающиеся некоторыми особенностями.

Одно из катастрофических вымираний организмов на границе мела и палеогена коснулось, как известно, наиболее специализированных форм, находящихся в большой степени на третьей стадии развития (угасание). Это преимущественно глоботрунканы (фораминиферы), аммониты, белемниты, динозавры и др. По скорости эволюции они относятся к первой группе. Большинство организмов второй и, в основном, третьей групп прошли этот рубеж без заметных изменений.

Одновременно с развитием исторической геологии еще в конце XVIII в. сложилось представ­ление о существовании более разнообразной геологической науки, которая стала называться "гео­гнозией". По содержанию геогнозия отвечала землеведению, так как в ней рассматривалось со­стояние всех известных оболочек Земли. Как отмечал Г.П.Леонов (1980), к началу XIX в. опреде­лилось два существенно различных направления исследования Земли: геологическое и геогности­ческое. Геологическое направление сосредоточило свое внимание на изучении верхнего осадочно­го слоя земной коры, причем его строение и развитие рассматривалось в основном с исторической точки зрения; геогностическое - своими исследованиями охватывало всю планету и включало в объекты изучения не только земную кору, но и все остальные оболочки Земли. Это, в свою оче­редь, заставляло геологов не только рассматривать Землю с исторической стороны, но и сосредо­точить свое внимание на определении состава геосфер, возникновении и развитии геологических процессов. Поэтому с течением времени историческое направление исследования постепенно ста­ло отступать на второй план.

К середине XIX в. относятся первые попытки-реконструкции физико-географических усло­вий отдельных геологических эпох как для крупных участков суши (Г.А.Траутшольд, Дж. Дэна, В.О.Ковалевский), так и для всего земного шара (Ж.Марку). Эти работы знаменовали собой "па-


леогеографический" этап развития исторической геологии. Большое значение для становления па­леогеографии имело введение в 1838 г. А.Грессли (1814-1865) понятия о фациях, сущность кото­рого заключается в том, что породы одного и того же возраста могут иметь разный состав, струк-» туру и текстуру, отражающие условия их образования.

В 1859 г. в Северной Америке зарождается представление о геосинклиналях (Дж.Холл)г, а" ■ конце XIX в. выдающийся русский геолог А.П.Карпинский в своих трудах, вскрывающих законо­мерности геологического развития европейской части России, закладывает основы учения о плат­формах. Представление о геосинклиналях и платформах как главнейших элементах структуры земной коры оформилось в виде стройной теории в труде французского ученого Э.Ога "Геосинк-» линали и континентальные площади" (1900) и стало важнейшим обобщением геологической исто­рии земной коры.

Широким распространением и развитием этих идей отечественная геологическая наука обя­зана А.А.Борисяку, который вслед за Э.Огом стал рассматривать историческую геологию как ис­торию развития геосинклиналей и платформ. Идеи А.А.Борисяка лежат в основе многих направ­лений современной исторической геологии. В 20-х годах ученик А.А.Борисяка Д.В.Наливкин зак­ладывает основы учения о фациях; несколько позднее в трудах Р.Ф.Геккера, Б.П.Марковского и других исследователей начинает оформляться "палеоэкологическое" направление в изучении вза-, имоотношений между организмами и средой обитания в прошлом.

Вскоре после работ Э.Ога немецкий геофизик А.Вегенер формулирует в наиболее полном виде гипотезу дрейфа континентов (гипотезу мобилизма). После некоторого периода забвения, на­чиная с 60-х годов XX в., эта идея возродилась на новой фактической основе уже как гипотеза неомобилизма (новая глобальная тектоника, или тектоника литосферных плит). Большой вклад в развитие этой концепции внесли А.Холмс, Г.Хесс, Р.Дитц, Ф.Вэйн, Д.Мэтьюз, Д.Вилсон, З.Ле Пи+ шон и многие другие исследователи.

20-40-е годы явились временем широкого развития региональных геологических исследова*-ний, на базе которых созданы крупные обобщающие сводки по территории Европы (С.Н.Бубнов), Сибири (В.А.Обручев), СССР (А.Д.Архангельский). Выполнению этих работ способствовали представления о фазах складчатости, выдвинутые выдающимся немецким тектонистом Г.Штилле. На базе обобщения громадного фактического материала по стратиграфии, палеогеографии, магма­тизму и тектонике формулируются основные закономерности геологического развития Земли в трудах зарубежных (Л.Кобер, Г.Штилле) и отечественных (А.Д.Архангельский, Д.В.Наливкищ Н.М.Страхов, Н.С.Шатский и др.) ученых.

Если конец XIX - 60-е годы XX в. могут быть выделены в "тектонический" этап развития исторической геологии, то для современного этапа характерны синтез уточненных данных по гео­логии континентов, анализ постоянно увеличивающегося потока сведений по геологии дна океач нов, работы по созданию цельной картины геологической истории Земли, по выявлению законо­мерностей этой истории и объяснению их причинной зависимости. При этом наука опирается не только на старые, постоянно совершенствующиеся методы исследования, но и на новые методы: абсолютной геохронологии, геохимические, геофизические, палеомагнитные, глубокого и сверх­глубокого бурения.

Наряду с научными исследованиями, уже в начале XX в. ведущие профессора начали читать курс исторической геологии в высших учебных заведениях - первоначально в Санкт-Петербурге^ затем в других городах России.

На первом этапе преподавания использовались переводные учебники, например двухтомник М.Неймайра "История Земли" (1897-1898) под редакцией А.А.Иностранцева. Позднее появились учебники, написанные русскими учёными. В Императорском Санкт-Петербургском университете профессором А.А.Иностранцевым (1903, том II) впервые читался курс лекций по исторической геологии. Наряду с описанием геологических разрезов других стран мира, А.А. Иностранцевым


приводится геологическая характеристика отдельных регионов России. Особенно подробные све­дения даются им по четвертичной системе, изучению которой до этого времени уделялось недо­статочно внимания.

В 1910-1911 гг. в Санкт-Петербургском горном институте Ф.Н.Чернышев читал курс лекций по исторической геологии, в котором были учтены его многолетние исследования по отдельным регионам России.

Как уже указывалось, идеи А.А.Борисяка лежат в основе палеогеографических реконструк­ций и связанной с ними последовательной смене физико-географических обстановок. В дальней­шем учение о фациях, разработанное Д.В.Наливкиным, также способствовало развитию истори-ко-геологических исследований и обогащению вузовского курса исторической геологии. Д.В.На-ливкин, кроме того, ввел в 1932 г. в курс исторической геологии сведения о магматизме и полез­ных ископаемых. В 40-х годах Б.С.Соколов читал этот курс лекций в ЛГУ, дополняя характеристи­ку периодов палеогеографическими особенностями континентов. В это же время выходят учебни­ки по исторической геологии Г.Ф.Мирчинка, А.Н.Мазаровича, М.К.Коровина и др. Двухтомное издание "Основы исторической геологии" Н.М.Страхова (1948) около тридцати лет было основ­ным учебником по данному курсу, а его палеогеографические схемы не потеряли своего значения до настоящего времени.

"Основы истории Земли, или введение в историческую геологию" американского исследова­теля У.Стокса (W.Stokes, 1960) дает представление о единой истории земной коры и ее органичес­кого мира на основании интеграции локальных событий как в пространстве, так и во времени.

Одним из основополагающих является учебник Г.П.Леонова (1980), в котором историческая геология рассматривается как отрасль науки, освещающая закономерности развития земной коры и Земли в целом.

Большим событием в исследованиях по исторической геологии явилась Международная на­учно-методическая конференция, организованная кафедрой исторической и динамической геоло­гии (зав. кафедрой профессор А.Х.Кагарманов) в Санкт-Петербургском горном институте (Техни­ческий университет) (20-21 апреля 1999 г.) и посвященная 110-летию со дня рождения выдающе­гося ученого академика Д.В.Наливкина. Эта конференция способствовала выработке концепции настоящего учебного пособия, дала возможность по-новому осмыслить накопившийся новый тео­ретический материал и значительно улучшить его демонстрационную часть.

В последние годы основными по курсу исторической геологии являются учебники под редакцией профессора А.Х.Кагарманова (1985), профессора Г.И.Немкова (1986) и академика В.Е.Хаина (1997).

Перспективы развития исторической геологии связаны с созданием стройной теории разви­тия земной коры, обобщающей все новейшие сведения, получаемые в последнее время геофизи­кой, геохимией, петрологией, палеонтологией и другими науками. Необходимо верно отразить се-отношение вертикальных и горизонтальных движений земной коры. Основой для этих обобщений может быть уже не мобилизм, который не в состоянии объяснить накопившиеся противоречащие ему факты, а, например, пульсационная концепция, основывающаяся на идеях цикличности и на­правленности геологических процессов, развиваемая в настоящее время академиком Е.Е.Мила-новским и другими исследователями.

Одна из важнейших задач исторической геологии - выявление закономерностей размещения полезных ископаемых - осложняется полигенностью и полихронностью минерагенеза. Большой интерес представляют появившиеся в последнее время данные плюм-тектоники (суперплюмы и т.д.) и открывшиеся перспективы построения на новой основе концепции рудообразования, неф-те- и газообразования.

Поиски новых следов жизни в докембрии и позднем протерозое могут дать интересные ре­зультаты и дополнить наши представления о самых ранних этапах развития биосферы и земной коры.


ОСНОВНЫЕ ПОНЯТИЯ И МЕТОДЫ ИСТОРИЧЕСКОЙ ГЕОЛОГИИ

Для успешного решения поставленных задач историческая геология должна обладать набо­ром методов. Исходя из комплексной, синтетической природы исторической геологии она ставит себе на службу методы всех перечисленных во введении геологических наук, а также методы био­логии, физики, химии, астрономии, математики, информатики и т.д.

Рассмотрим методы исторической геологии.

Глава 1. Историческая геология - как наука

докембрий палеозойский ископаемый геосинклинальный

Историческая геология включает в себя ряд разделов. Стратиграфия занимается изучением состава, места и времени образования пластов горных пород и их корреляцию. Палеогеография рассматривает климат, рельеф, развитие древних морей, рек, озер и т.д. в прошлые геологические эпохи. Определением времени, характера, величины тектонических движений занимается геотектоника. Время и условия образования магматических пород восстанавливает петрология. Таким образом, историческая геология тесно связана практически со всеми областями геологического знания.

Одной из важнейших проблем геологии является проблема определения геологического времени формаирования осадочных пород. Формирование геологических пород в фанерозое сопровождалось все усиливающейся биологической активностью, поэтому палеобиология имеет большое значение в геологических исследованиях. Для геологов важным моментом является то, что эволюционные изменения в организмах и появление новых видов происходит в определенный промежуток геологического времени. Принцип финальной сукцессии постулирует, что в одно и тоже время в океане распространены одни и те же организмы. Из этого следует, что геолог, определив набор ископаемых остатков в породе, может найти одновременно образовавшиеся породы.

Границы эволюционных преобразований - границы геологического времени образования осадочных горизонтов. Чем быстрее или короче этот промежуток, тем больше возможностей для более дробных стратиграфических делений толщ. Таким образом, решается задача определения возраста осадочных толщ. Другая важная задача - определение условий обитания. Поэтому так важно определить те изменения, которые на организмы наложила среда обитания, зная которые мы можем определить условия формирования осадков.

"Геологическая колонка" и ее интерпретация креационистами и униформистами

Геология, или наука о Земле, является той научной дисциплиной, которая наиболее успешно использовалась скептиками для дискредитации Библии. Изучение структуры Земли, особенно горных пород, образующих верхнюю часть земной коры...

До XIX века тема «человека и природа» исследовалась почти исключительно в рамках философии. Не были систематизированы соответствующие факты. Не проводилась классификация форм воздействий человека на природу...

Геологическая деятельность человека и ее последствия

«Мысль не есть форма энергии, -- писал В.И. Вернадский. -- Как же она может изменять материальные процессы?» Действительно, техногенез выступает как геологическая сила, приводящая в движение гигантские массы вещества...

Геоэкологические проблемы состояния и функционирования экосистемы Краснодарского водохранилища

В октябре 1973г в краснодарских газетах появились первые заметки о грандиозном строительстве крупнейшего на Кубани водохранилища - Краснодарского. Оно сооружалось по распоряжению Совета Министров СССР...

Ґрунтознавство як наука

Ґрунтознавство - наука про ґрунт, його утворення (генезис), будову, склад, властивості, закономірності географічного поширення, взаємозвязок з навколишнім середовищем, роль у природі, шляхи й методи його меліорації...

Петрография магматических и метаморфических пород

Петрография является наукой геологического цикла, целью которой является всестороннее изучение горных пород, включая их происхождение. Следует отметить, что по своей сути петрография должна заниматься всеми типами горных пород...

Почвы Гатчинского района Ленинградской области

Большей частью Гатчинский район лежит на Ордовикском известняковом плато. Это относительно приподнятая равнина с небольшим уклоном в южном и юго-восточном направлениях, сложенная ордовикскими известняками...

Проект комбинированной разработки рудной залежи

Разработка Лебединского горнорудного месторождения

Лебединское месторождение приурочено к центральной части северо-восточной полосы Курской магнитной аномалии, проходящей в южной части Среднерусской возвышенности по водоразделу рек Днепра (на западе) и Дона (на востоке)...

Историческая геология это комплексная наука, занимающаяся изучением развития планеты и земной коры и последовательности геологических событий.

Исследования в дисциплинах геологического цикла производится в историческом контексте. Каждая из наук рассматривает развитие и последовательность изучаемых предметов и явлений. К тому же в геологии существует ряд дисциплин, занимающихся исследованием общей геологической истории. К ним относится историческая геология.

История

Знания о геологической истории Земли накапливались с древних времен в рамках единого геологического направления. Однако предпосылки формирования исторической геологии возникли лишь к XIX в., когда Ж. Кювье, У. Смит, А. Броньяр получили выводы о последовательности смены горизонтов с органическими остатками. Это послужило основой для палеонтологического метода , одного из главных в данной дисциплине.

Становление ее в качестве самостоятельной науки происходило в XIX в. и включало два этапа, выделяемых на основе используемых теоретических положений. Так, в первой половине столетия развитие данной дисциплины шло под влиянием разработанной А. д"Орбиньи и Ж. Кювье теории катастроф, а во второй половине ее сменили идеи эволюционного развития Ч. Дарвина, Ж. Ламарка и Ч. Лайеля.

Кроме того, в соответствии с порядком становления близких дисциплин, преобладающих в развитии исторической геологии, данный процесс до середины XX в. подразделяют на три этапа: стратиграфический, палеогеографический, тектонический. В начале века сформировалась стратиграфия: создали структуру стратиграфической шкалы, разработали шкалу для Европы, хронологически систематизировали геологический материал. В середине столетия началось становление палеогеографии благодаря реконструкциям физико-географических условий Дж. Дана и В.О. Ковалевского и введению А. Грессли понятия «фация». Немного позже начало зарождаться учение о геосинклиналях, а к концу столетия — учение о платформах, составляющие основу тектоники. Затем начался современный этап.

Сама историческая геология оформилась во второй половине XIX в. Тогда же были сформулированы основные направления исследований.

Историческая геология внесла значительный вклад в развитие геологических знаний. Так, в рамках данной науки были выяснены законы развития геологических процессов (формирования материков, возникновения и преобразования платформ и геосинклиналей, изменения характера магматизма и т. д.), спрогнозирована общая направленность эволюции планеты и земной коры.

Современная наука

Сейчас историческая геология включает два направления:

  • Исследование геологической истории в контексте тектоники, палеогеографии, стратиграфии
  • Создание общей историко-геологической картины с установлением закономерностей и их взаимосвязей.

Таким образом, данная наука включает геохронологию, палеотектонику, палеогеографию, стратиграфию .

В настоящее время сфера исследования исторической геологии включает несколько предметов. К ним относится возраст пород (хронологическая последовательность их формирования и положение в разрезе, а также органические остатки, история развития организмов), физико-географические условия (положение суши и океана, климат, рельеф в различные периоды геологической истории), тектоническая обстановка и магматизм (развитие земной коры, формирование и развитие дислокаций: поднятий, складок, прогибов, разрывных нарушений и др.), взаимосвязь геологических процессов, закономерная приуроченность месторождений к магматическим телам, геологическим комплексам и структурам.

Таким образом, основная цель исторической геологии состоит в воссоздании последовательности геологических процессов в недрах и на поверхности планеты.

Совместно с прочими геологическими дисциплинами историческая геология составляет основу общей геологии, изучая законы развития Земли. К тому же данная наука имеет прикладное значение, которое состоит в применении ее данных для создания научных основ поисков и разведки полезных ископаемых путем выяснения условий их генезиса и законов расположения месторождений.

Данная дисциплина связана со всеми геологическими науками, так как рассмотрение предметов изучения в этой сфере происходит в историческом контексте. К тому же историческая геология использует данные, выводы и методы многих из них: стратиграфии , литологии , палеонтологии , петрологии , тектоники, геохимии, региональной геологии , палеогеографии, геофизики . Наиболее близка историческая геология к прочим историко-геологическим дисциплинам, таким как стратиграфия и палеонтология. Более того, первую из них иногда считают разделом исторической геологии. Стратиграфия, в том числе биостратиграфия, составляет основу рассматриваемой науки, устанавливая последовательность формирования пород, и разрабатывая геохронологическую систему, что обеспечивает взаимодействие с геохронологией. Посредством биостратиграфии образуется связь исторической геологии с палеонтологией. Воссоздание физико-географических условий на основе полученных данных относится к палеогеографии. Изучение развития земной коры и последовательности происходящих в ней процессов входит в сферу тектоники. Исследование истории процессов магматизма, метаморфизма, вулканизма связывает историческую геологию с петрографией.

Предмет, задачи, методы

Предметом исторической геологии являются породы и органические остатки, на основе которых выясняют последовательность геологических процессов.

К задачам данной науки относятся реконструкция и систематизация этапов развития земной коры и биосферы, выяснение законов и движущих сил этих процессов. Это подразумевает вычисление возраста пород, воссоздание тектонических структур и движений, вулканизма, метаморфизма, плутонизма, физико-географических условий прошлого.

Для выяснения продолжительности и последовательности геологических процессов служит стратиграфия. Фациальные обстановки восстанавливают в основном путем исследования пород и органических остатков в рамках петрологии и палеонтологии. Выяснением последовательности тектонических движений занимается тектоника, используя несогласия, перерывы в осадконакоплении, дизъюнктивы, пликативные деформации. Для установления законов строения и эволюции земной коры используют данные геотектоники, геофизики, региональной геологии.

Историческая геология, как было сказано выше, применяет методы прочих геологических дисциплин:

  • Биостратиграфии (эволюционный, руководящих ископаемых, палеоэкологические, количественные методы корреляции),
  • Геологические (литологический, минералого-петрографический, структурный, экостратиграфический, ритмостратиграфический, климатостратиграфический),
  • Геофизические (магнитостратиграфический, сейсмостратиграфический),
  • Абсолютной геохронологии (урано-ториево-свинцовый, свинцовый, рубидий-стронциевый, калий-аргоновый, самарий-неодимовый, радиоуглеродный, треков осколочного деления),
  • Историко-геологический (фациальный, формационный анализы).

Помимо названных прикладных методов, в данной науке применяют общетеоретические, такие как диалектический и актуалистический.

Образование и работа

Историческую геологию изучают в рамках геологических специальностей, так как она составляет основу данной сферы знаний. В качестве отдельной специальности она встречается редко.

Трудовая сфера определяется направленностью специальности и выбором выпускника, так как многие из геологических специальностей позволяют работать по нескольким профессиям. В основном такие специалисты трудятся в производстве и научно-образовательной сфере. Что касается людей, специализированных именно на исторической геологии, они работают в основном в науке и образовании.

Заключение

Историческая геология — одна из основных дисциплин геологического цикла . Она взаимосвязана с прочими науками посредством использования их данных и методов и формирования историко-геологической основы для их исследований. К тому же применяется для поисков месторождений. Несмотря на отсутствие такой профессии, знания в данной сфере используются во всех отраслях геологии.

Самые древние породы, обнажающиеся на поверхности материков, образовались в архейскую эру. Распознавание этих пород затруднено, поскольку их выходы рассредоточены и в большинстве случаев перекрыты мощными толщами более молодых пород. Там, где эти породы обнажаются, они настолько метаморфизованы, что зачастую нельзя восстановить их исходный характер. Во время многочисленных продолжительных этапов денудации были разрушены мощные толщи этих пород, а сохранившиеся содержат очень мало ископаемых организмов и поэтому их корреляция затруднительна или вообще невозможна. Интересно отметить, что самые древние известные архейские породы, вероятно, представляют собой сильно метаморфизованные осадочные породы, а более древние породы, перекрытые ими, были расплавлены и разрушены в результате многочисленных магматических интрузий. Поэтому до сих пор не обнаружены следы первичной земной коры.

В Северной Америке имеются два больших ареала выходов на поверхность архейских пород. Первый из них – Канадский щит – расположен в центральной Канаде по обе стороны Гудзонова залива. Хотя местами архейские породы перекрыты более молодыми, на большей части территории Канадского щита они слагают дневную поверхность. Древнейшие известные в этом районе породы представлены мраморами, аспидными и кристаллическими сланцами, переслаивающимися с лавами. Первоначально здесь были отложены известняки и глинистые сланцы, впоследствии запечатанные лавами. Затем эти породы испытали воздействие мощных тектонических движений, которые сопровождались крупными гранитными интрузиями. В конечном итоге толщи осадочных пород подверглись сильному метаморфизму. После длительного периода денудации эти сильно метаморфизованные породы местами были выведены на поверхность, но общий фон составляют граниты.

Выходы архейских пород имеются также в Скалистых горах, где слагают гребни многих хребтов и отдельные вершины, например Пайкс-Пик. Более молодые породы там разрушены денудацией.
В Европе архейские породы обнажаются на территории Балтийского щита в пределах Норвегии, Швеции, Финляндии и России. Они представлены гранитами и сильно метаморфизованными осадочными породами. Такие же выходы архейских пород имеются на юге и юго-востоке Сибири, в Китае, западной Австралии, Африке и на северо-востоке Южной Америки. Древнейшие следы жизнедеятельности бактерий и колоний одноклеточных сине-зеленых водорослей Collenia были обнаружены в архейских породах южной Африки (Зимбабве) и провинции Онтарио (Канада).

Протерозойская эра.

В начале протерозоя после длительного периода денудации суша была в значительной степени разрушена, отдельные части материков испытали погружение и были затоплены мелководными морями, а некоторые низменные котловины начали заполняться континентальными отложениями. В Северной Америке самые значительные выходы протерозойских пород имеются в четырех районах. Первый из них приурочен к южной части Канадского щита, где мощные толщи глинистых сланцев и песчаников рассматриваемого возраста обнажаются вокруг оз. Верхнего и северо-восточнее оз. Гурон. Эти породы имеют как морское, так и континентальное происхождение. Их распределение указывает на то, что положение мелководных морей на протяжении протерозоя значительно менялось. Во многих местах морские и континентальные осадки переслаиваются с мощными лавовыми толщами. По окончании осадконакопления происходили тектонические движения земной коры, протерозойские породы претерпевали складкообразование и формировались крупные горные системы. В предгорных районах к востоку от Аппалачей имеются многочисленные выходы протерозойских пород. Первоначально они отлагались в виде пластов известняков и глинистых сланцев, а затем во время орогенеза (горообразования) метаморфизовались и превратились в мрамора, аспидные и кристаллические сланцы. В районе Большого каньона мощная толща протерозойских песчаников, глинистых сланцев и известняков несогласно перекрывает архейские породы. В северной части Скалистых гор была отложена толща протерозойских известняков мощностью ок. 4600 м. Хотя протерозойские образования в этих районах испытали воздействие тектонических движений и были смяты в складки и разбиты разломами, эти подвижки были недостаточно интенсивными и не могли привести к метаморфизации пород. Поэтому там сохранились исходные осадочные текстуры.

В Европе значительные выходы протерозойских пород имеются в пределах Балтийского щита. Они представлены сильно метаморфизованными мраморами и аспидными сланцами. На северо-западе Шотландии мощная толща протерозойских песчаников перекрывает архейские граниты и кристаллические сланцы. Обширные выходы протерозойских пород встречаются на западе Китая, в центральной Австралии, южной Африке и центральной части Южной Америки. В Австралии указанные породы представлены мощной толщей неметаморфизованных песчаников и глинистых сланцев, а в восточной Бразилии и южной Венесуэле – сильно метаморфизованными аспидными и кристаллическими сланцами.

Ископаемые сине-зеленые водоросли Collenia весьма широко распространены на всех материках в неметаморфизованных известняках протерозойского возраста, где также обнаружены немногочисленные обломки раковин примитивных моллюсков. Однако остатки животных очень редки, и это свидетельствует о том, что большинство организмов отличалось примитивным строением и еще не имело твердых оболочек, которые сохраняются в ископаемом состоянии. Хотя следы ледниковых периодов фиксируются для ранних этапов истории Земли, обширное оледенение, имевшее почти глобальное распространение, отмечается только в самом конце протерозоя.

Палеозойская эра.

После того, как суша пережила длительный период денудации в конце протерозоя, некоторые ее территории испытали прогибание и были затоплены мелководными морями. В результате денудации возвышенных участков осадочный материал сносился водными потоками в геосинклинали, где накопились толщи палеозойских осадочных пород мощностью более 12 км. В Северной Америке в начале палеозойской эры образовались две крупные геосинклинали. Одна из них, называемая Аппалачской, протянулась от северной части Атлантического океана через юго-восточную Канаду и далее на юг к Мексиканскому заливу вдоль оси современных Аппалачей. Другая геосинклиналь соединяла Северный Ледовитый океан с Тихим, проходя несколько восточнее Аляски на юг через восточную часть Британской Колумбии и западную часть Альберты, далее через восточную Неваду, западную Юту и южную Калифорнию. Таким образом Северная Америка была разделена на три части. В отдельные периоды палеозоя ее центральные районы отчасти затоплялись и обе геосинклинали соединялись мелководными морями. В другие периоды в результате изостатических поднятий суши или колебаний уровня Мирового океана происходили морские регрессии, и тогда в геосинклиналях откладывался терригенный материал, смытый из сопредельных возвышенных районов.

В палеозое сходные условия существовали и на других материках. В Европе огромные моря периодически затопляли Британские о-ва, территории Норвегии, Германии, Франции, Бельгии и Испании, а также обширную область Восточно-Европейской равнины от Балтийского моря до Уральских гор. Крупные выходы палеозойских пород имеются также в Сибири, Китае и северной Индии. Они являются коренными породами в большинстве районов восточной Австралии, северной Африки, а также в северных и центральных районах Южной Америки.

Палеозойская эра делится на шесть периодов неодинаковой продолжительности, чередующихся с кратковременными этапами изостатических поднятий или морских регрессий, во время которых в пределах материков осадкообразование не происходило.

Кембрийский период

– самый ранний период палеозойской эры, названный по латинскому названию Уэльса (Камбрия), где впервые были изучены породы этого возраста. В Северной Америке в кембрии обе геосинклинали были затоплены, а во второй половине кембрия центральная часть материка занимала столь низкое положение, что оба прогиба соединялись мелководным морем и там накапливались слои песчаников, глинистых сланцев и известняков. В Европе и Азии происходила крупная морская трансгрессия. Эти части света были в значительной степени затоплены. Исключение составляли три крупных обособленных массива суши (Балтийский щит, Аравийский п-ов и южная Индия) и ряд небольших изолированных участков суши в южной Европе и южной Азии. Менее крупные морские трансгрессии происходили в Австралии и центральной части Южной Америки. Кембрий отличался довольно спокойными тектоническими обстановками.
В отложениях этого периода сохранились первые многочисленные ископаемые, свидетельствующие о развитии жизни на Земле. Хотя наземные растения или животные не отмечены, мелководные эпиконтинентальные моря и затопленные геосинклинали изобиловали многочисленными беспозвоночными животными и водными растениями. Наиболее необычные и интересные животные того времени – трилобиты (рис. 11), класс вымерших примитивных членистоногих, были широко распространены в кембрийских морях. Их известково-хитиновые панцири обнаружены в породах этого возраста на всех материках. Кроме того, существовало много типов плеченогих (брахиопод), моллюсков и других беспозвоночных. Таким образом, в кембрийских морях присутствовали все основные формы беспозвоночных организмов (за исключением кораллов, мшанок и пелеципод).

В конце кембрийского периода бóльшая часть суши испытала поднятие и произошла кратковременная морская регрессия.

Ордовикский период

– второй период палеозойской эры (называющийся по имени кельтского племени ордовиков, населявшего территорию Уэльса). В этот период материки снова испытали прогибание, в результате чего геосинклинали и низменные котловины превратились в мелководные моря. В конце ордовика ок. 70% территории Северной Америки было затоплено морем, в котором отложились мощные толщи известняков и глинистых сланцев. Морем были покрыты также значительные территории Европы и Азии, частично – Австралия и центральные районы Южной Америки.

Все кембрийские беспозвоночные продолжали развиваться и в ордовике. Кроме того, появились кораллы, пелециподы (двустворчатые моллюски), мшанки и первые позвоночные. В Колорадо в ордовикских песчаниках обнаружены фрагменты самых примитивных позвоночных – бесчелюстных (остракодерм), у которых отсутствовали настоящие челюсти и парные конечности, а передняя часть тела была покрыта костными пластинками, образующими защитный панцирь.

На основе палеомагнитного изучения пород установлено, что на протяжении большей части палеозоя Северная Америка располагалась в экваториальной зоне. Ископаемые организмы и широко распространенные известняки этого времени свидетельствуют о господстве в ордовике теплых мелководных морей. Австралия располагалась близ Южного полюса, а северо-западная Африка – в районе самого полюса, что подтверждается запечатлевшимися в ордовикских породах Африки признаками широкого распространения оледенения.

В конце ордовикского периода в результате тектонических движений происходили поднятие материков и морская регрессия. Местами коренные кембрийские и ордовикские породы испытали процесс складкообразования, который сопровождался ростом гор. Этот древнейший этап орогенеза носит название каледонской складчатости.

Силурийский период.

Впервые породы этого периода были изучены также в Уэльсе (название периода происходит от кельтского племени силуров, населявшего этот регион).

После тектонических поднятий, ознаменовавших окончание ордовикского периода, наступил денудационный этап, а затем в начале силура материки снова испытали прогибание, а моря затопили низменные районы. В Северной Америке в раннем силуре площадь морей существенно сократилась, однако в среднем силуре они заняли почти 60% ее территории. Сформировалась мощная толща морских известняков ниагарской формации, получившей свое название от Ниагарского водопада, порог которого она слагает. В позднем силуре площади морей сильно сократились. В полосе, простирающейся от современного штата Мичиган до центральной части штата Нью-Йорк, накапливались мощные соленосные пласты.

В Европе и Азии силурийские моря были широко распространены и занимали почти те же территории, что и кембрийские моря. Незатопленными оставались те же изолированные массивы, что и в кембрии, а также значительные территории северного Китая и Восточной Сибири. В Европе мощные известняковые толщи накапливались по периферии южной оконечности Балтийского щита (в настоящее время они частично затоплены Балтийским морем). Небольшие моря были распространены в восточной Австралии, северной Африке и в центральных районах Южной Америки.

В силурийских породах обнаружены в общем те же основные представители органического мира, что и в ордовикских. Наземные растения в силуре еще не появились. Среди беспозвоночных гораздо более обильными стали кораллы, в результате жизнедеятельности которых во многих районах сформировались массивные коралловые рифы. Трилобиты, столь характерные для кембрийских и ордовикских пород, утрачивают свое доминирующее значение: их становится меньше как в количественном, так и видовом отношениях. В конце силура появилось множество крупных водных членистоногих, называемых эвриптеридами, или ракоскорпионами.

Силурийский период в Северной Америке завершился без крупных тектонических подвижек. Однако в Западной Европе в это время образовался пояс каледонид. Эта горная цепь простиралась на территории Норвегии, Шотландии и Ирландии. Орогенез происходил также в северной Сибири, в результате чего ее территория была так высоко поднята, что больше уже никогда не затоплялась.

Девонский период

назван по имени графства Девон в Англии, где впервые были изучены породы этого возраста. После денудационного перерыва отдельные районы материков снова испытали погружение и были затоплены мелководными морями. В северной Англии и частично в Шотландии молодые каледониды препятствовали проникновению моря. Однако их разрушение привело к накоплению мощных толщ терригенных песчаников в долинах предгорных рек. Эта формация древних красных песчаников известна хорошо сохранившимися ископаемыми рыбами. Южная Англия в это время была покрыта морем, в котором отлагались мощные толщи известняков. Значительные территории на севере Европы были тогда затоплены морями, в которых накапливались слои глинистых сланцев и известняков. При врезании Рейна в эти толщи в районе массива Эйфель образовались живописные утесы, которые поднимаются по берегам долины.

Девонские моря покрывали многие районы европейской части России, южной Сибири и южного Китая. Обширный морской бассейн затопил центральную и западную Австралию. Эта территория не покрывалась морем с кембрийского периода. В Южной Америке морская трансгрессия распространилась на некоторые центральные и западные районы. Кроме того, существовал узкий субширотный прогиб в Амазонии. В Северной Америке очень широко распространены девонские породы. На протяжении большей части этого периода существовали два крупных геосинклинальных бассейна. В среднем девоне морская трансгрессия распространилась на территорию современной долины р. Миссисипи, где накопилась многослойная толща известняков.

В верхнем девоне мощные горизонты сланцев и песчаников сформировались в восточных районах Северной Америки. Эти обломочные толщи соответствуют этапу горообразования, начавшемуся в конце среднего девона и продолжавшемуся до окончания этого периода. Горы простирались вдоль восточного крыла Аппалачской геосинклинали (от современных юго-восточных районов США до юго-восточной Канады). Этот регион был сильно поднят, его северная часть претерпела складкообразование, затем там произошли обширные гранитные интрузии. Этими гранитами сложены горы Уайт-Маунтинс в Нью-Гэмпшире, Стоун-Маунтин в Джорджии и ряд других горных сооружений. Верхнедевонские, т.н. Акадские, горы были переработаны денудационными процессами. В результате к западу от Аппалачской геосинклинали накопилась слоистая толща песчаников, мощность которых местами превышает 1500 м. Они широко представлены в районе гор Кэтскилл, откуда и пошло название песчаников Кэтскилл. В меньших масштабах горообразование в это же время проявилось в некоторых районах Западной Европы. Орогенез и тектонические поднятия земной поверхности послужили причиной морской регрессии в конце девонского периода.

В девоне произошли некоторые важные события в эволюции жизни на Земле. Во многих районах земного шара были обнаружены первые бесспорные находки наземных растений. Так, например, в окрестностях Гилбоа (шт. Нью-Йорк) было найдено много видов папоротникообразных, включая гигантские древовидные.

Среди беспозвоночных были широко распространены губки, кораллы, мшанки, брахиоподы и моллюски (рис. 12). Существовало несколько типов трилобитов, хотя их численность и видовое разнообразие значительно сократились по сравнению с силуром. Девон часто называют «веком рыб» благодаря пышному расцвету этого класса позвоночных. Хотя еще существовали примитивные бесчелюстные, преобладать стали более совершенные формы. Акулообразные рыбы достигали в длину 6 м. В это время появились двоякодышащие рыбы, у которых плавательный пузырь трансформировался в примитивные легкие, что позволяло им существовать какое-то время на суше, а также кистеперые и лучеперые. В верхнем девоне обнаружены первые следы наземных животных – крупных саламандроподобных земноводных, называемых стегоцефалами. Особенности скелета показывают, что они развились из двоякодышащих рыб путем дальнейшего усовершенствования легких и видоизменения плавников и превращения их в конечности.

Каменноугольный период.

После некоторого перерыва материки снова испытали погружение и их низменные участки превратились в мелководные моря. Так начался каменноугольный период, получивший свое название по широкому распространению угольных залежей как в Европе, так и в Северной Америке. В Америке его ранний этап, характеризовавшийся морскими обстановками, раньше называли миссисипским по мощной толще известняков, сформировавшейся в пределах современной долины р. Миссисипи, а теперь его относят к нижнему отделу каменноугольного периода.

В Европе на протяжении всего каменноугольного периода территории Англии, Бельгии и северной Франции были большей частью затоплены морем, в котором сформировались мощные горизонты известняков. Затоплялись также некоторые районы южной Европы и южной Азии, где отложились мощные слои глинистых сланцев и песчаников. Некоторые из этих горизонтов имеют континентальное происхождение и содержат много ископаемых остатков наземных растений, а также вмещают угленосные пласты. Поскольку нижнекаменноугольные формации мало представлены в Африке, Австралии и Южной Америке, можно предполагать, что эти территории находились преимущественно в субаэральных условиях. Кроме того, имеются свидетельства широкого распространения там материкового оледенения.

В Северной Америке Аппалачскую геосинклиналь с севера ограничивали Акадские горы, а с юга, со стороны Мексиканского залива, в нее проникало Миссисипское море, которое заливало и долину Миссисипи. Небольшие морские бассейны занимали некоторые участки на западе материка. В районе долины Миссисипи накапливалась многослойная толща известняков и сланцев. Один из этих горизонтов, т.н. индианский известняк, или спергенит, является хорошим строительным материалом. Он использовался при сооружении многих правительственных зданий в Вашингтоне.

В конце каменноугольного периода в Европе широко проявилось горообразование. Цепи гор простирались от южной Ирландии через южную Англию и северную Францию в южную Германию. Этот этап орогенеза называют герцинским, или варисцийским. В Северной Америке локальные поднятия происходили в конце миссисипского периода. Эти тектонические движения сопровождались морской регрессией, развитию которой способствовали также оледенения южных материков.

В целом органический мир нижнекаменноугольного (или миссисипского) времени был таким же, как и в девоне. Однако, помимо большего разнообразия типов древовидных папоротников, флора пополнилась древовидными плаунами и каламитовыми (древовидными членистостебельными класса хвощей). Беспозвоночные в основном были представлены теми же формами, что и в девоне. В миссисипское время стали более обычными морские лилии – донные животные, по форме сходные с цветком. Среди ископаемых позвоночных многочисленны акулоподобные рыбы и стегоцефалы.

В начале позднекаменноугольного времени (в Северной Америке – пенсильванского) условия на материках стали быстро меняться. Как следует из значительно более широкого распространения континентальных осадков, моря занимали меньшие пространства. Северо-западная Европа бóльшую часть этого времени находилась в субаэральных условиях. Обширное эпиконтинентальное Уральское море широко распространилось в северной и центральной России, а крупная геосинклиналь простиралась через южную Европу и южную Азию (современные Альпы, Кавказ и Гималаи расположены вдоль ее оси). Этот прогиб, именующийся геосинклиналью, или морем, Тетис, существовал на протяжении ряда последующих геологических периодов.

На территории Англии, Бельгии и Германии простирались низменности. Здесь в результате небольших колебательных движений земной коры происходило чередование морских и континентальных обстановок. Когда море отступало, формировались низменные заболоченные ландшафты с лесами из древовидных папоротников, древовидных плаунов и каламитовых. При наступании морей осадочные образования перекрывали леса, уплотняя древесные остатки, которые превращались в торф, а затем в уголь. В позднекаменноугольное время на материках Южного полушария распространилось покровное оледенение. В Южной Америке в результате морской трансгрессии, проникавшей с запада, была затоплена бóльшая часть территории современных Боливии и Перу.

В раннепенсильванское время в Северной Америке Аппалачская геосинклиналь замкнулась, утратила связь с Мировым океаном, и в восточных и центральных районах США накапливались терригенные песчаники. В середине и конце этого периода во внутренних районах Северной Америки (так же, как в Западной Европе) преобладали низменности. Здесь мелководные моря периодически уступали место болотам, в которых накапливались мощные торфяные залежи, впоследствии трансформировавшиеся в крупные угольные бассейны, которые простираются от Пенсильвании до восточного Канзаса. Некоторые западные районы Северной Америки заливались морем на протяжении большей части этого периода. Там отлагались слои известняков, сланцев и песчаников.

Широкое распространение субаэральных обстановок в значительной мере способствовало эволюции наземных растений и животных. Гигантские леса из древовидных папоротников и плаунов покрывали обширные заболоченные низменности. Эти леса изобиловали насекомыми и паукообразными. Один из видов насекомых, самый крупный в геологической истории, был похож на современную стрекозу, но имел размах крыльев ок. 75 см. Значительно большего видового разнообразия достигли стегоцефалы. Некоторые превышали в длину 3 м. Только в Северной Америке в болотных отложениях пенсильванского времени было обнаружено более 90 видов этих гигантских земноводных, имевших сходство с саламандрами. В этих же породах были найдены остатки древнейших пресмыкающихся. Однако из-за фрагментарности находок трудно составить полное представление о морфологии этих животных. Вероятно, эти примитивные формы были похожи на аллигаторов.

Пермский период.

Изменения природных условий, начавшиеся в позднекаменноугольное время, еще больше проявились в пермском периоде, завершившем палеозойскую эру. Его название происходит от Пермской области в России. В начале этого периода море занимало Уральскую геосинклиналь – прогиб, следовавший согласно простиранию современных Уральских гор. Мелководное море периодически покрывало некоторые районы Англии, северной Франции и южной Германии, где накапливались слоистые толщи морских и континентальных осадков – песчаников, известняков, глинистых сланцев и каменной соли. Море Тетис существовало на протяжении большей части периода, и в районе северной Индии и современных Гималаев образовалась мощная толща известняков. Пермские отложения большой мощности представлены в восточной и центральной Австралии и на островах Южной и Юго-Восточной Азии. Они широко распространены в Бразилии, Боливии и Аргентине, а также в южной Африке.

Многие пермские формации в северной Индии, Австралии, Африке и Южной Америке имеют континентальное происхождение. Они представлены уплотненными ледниковыми отложениями, а также широко распространенными водно-ледниковыми песками. В Центральной и Южной Африке этими породами начинается мощная толща континентальных отложений, известная как серия кару.

В Северной Америке пермские моря занимали меньшую площадь по сравнению с предыдущими периодами палеозоя. Главная трансгрессия распространялась из западной части Мексиканского залива на север через территорию Мексики и проникла в южные районы центральной части США. Центр этого эпиконтинентального моря располагался в пределах современного штата Нью-Мексико, где сформировалась мощная толща известняков серии кэпитен. Благодаря деятельности подземных вод эти известняки приобрели сотовую структуру, особенно ярко выраженную в знаменитых Карлсбадских пещерах (шт. Нью-Мексико, США). Восточнее, в Канзасе и Оклахоме, отложились прибрежные фации красных глинистых сланцев. В конце перми, когда площадь, занятая морем, значительно сократилась, сформировались мощные соленосные и гипсоносные толщи.

В конце палеозойской эры, отчасти в каменноугольном периоде и отчасти – в пермском, во многих районах начался орогенез. Мощные толщи осадочных пород Аппалачской геосинклинали были смяты в складки и разбиты разломами. В результате образовались горы Аппалачи. Этот этап горообразования в Европе и Азии называют герцинским, или варисцийским, а в Северной Америке – аппалачским.

Растительный мир пермского периода был такой же, как и во второй половине каменноугольного. Однако растения имели меньшие размеры и не были так многочисленны. Это указывает на то, что климат пермского периода стал холоднее и суше. Беспозвоночные животные перми были унаследованы от предыдущего периода. Большой скачок произошел в эволюции позвоночных (рис. 13). На всех материках континентальные отложения пермского возраста содержат многочисленные остатки пресмыкающихся, достигавших в длину 3 м. Все эти предки мезозойских динозавров отличались примитивным строением и внешне были похожи на ящериц или аллигаторов, но иногда имели необычные особенности, например, высокий парусообразный плавник, протягивающийся от шеи до хвоста вдоль спины, у диметродона. Все еще многочисленными были стегоцефалы.

В конце пермского периода горообразование, проявившееся во многих районах земного шара на фоне общего поднятия материков, привело к столь значительным изменениям окружающей среды, что начали вымирать многие характерные представители палеозойской фауны. Пермский период был заключительной стадией существования многих беспозвоночных, особенно трилобитов.

Мезозойская эра,

подразделяемая на три периода, отличалась от палеозойской преобладанием континентальных обстановок над морскими, а также составом флоры и фауны. Наземные растения, многие группы беспозвоночных и особенно позвоночные животные приспособились к новым обстановкам и претерпели существенные изменения.

Триасовый период

открывает мезозойскую эру. Его название происходит от греч. trias (троица) в связи с четким трехчленным строением толщи отложений этого периода в северной Германии. В основании толщи залегают красноцветные песчаники, в середине – известняки, а вверху – красноцветные песчаники и глинистые сланцы. На протяжении триаса значительные территории Европы и Азии были заняты озерами и мелководными морями. Эпиконтинентальное море покрывало Западную Европу, причем его береговая линия прослеживается на территории Англии. В этом морском бассейне и накапливались вышеупомянутые стратотипические осадки. Песчаники, залегающие в нижней и верхней частях толщи, отчасти имеют континентальное происхождение. Другой триасовый морской бассейн проникал на территорию северной России и распространялся к югу по Уральскому прогибу. Огромное море Тетис тогда покрывало примерно такую же территорию, как и в позднекаменноугольное и пермское время. В этом море накопилась мощная толща доломитовых известняков, которыми сложены Доломитовые Альпы северной Италии. На юге центральной Африки триасовый возраст имеет бóльшая часть верхней толщи континентальной серии кару. Эти горизонты известны обилием ископаемых остатков пресмыкающихся. В конце триаса на территории Колумбии, Венесуэлы и Аргентины образовались покровы алевритов и песков континентального генезиса. Пресмыкающиеся, найденные в этих слоях, обнаруживают удивительное сходство с фауной серии кару в южной Африке.

В Северной Америке триасовые породы не так широко распространены, как в Европе и Азии. Продукты разрушения Аппалачей – красноцветные континентальные пески и глины – накапливались во впадинах, расположенных восточнее этих гор и испытывавших погружение. Эти отложения, переслаивающиеся с горизонтами лавы и пластовыми интрузиями, разбиты разломами и имеют падение к востоку. В Ньюаркском бассейне в Нью-Джерси и долине р.Коннектикут им соответствуют коренные породы серии ньюарк. Мелководные моря занимали некоторые западные районы Северной Америки, где накапливались известняки и глинистые сланцы. Континентальные песчаники и глинистые сланцы триаса выходят по бортам Большого каньона (шт. Аризона).

Органический мир в триасовом периоде был существенно иным, чем в пермском периоде. Для этого времени характерно обилие крупных хвойных деревьев, остатки которых часто встречаются в триасовых континентальных отложениях. Глинистые сланцы формации чинл на севере Аризоны насыщены окременелыми стволами деревьев. В результате выветривания сланцев они обнажились и теперь образуют каменный лес. Широкое развитие получили саговниковые (или цикадофиты), растения с тонкими или бочонковидными стволами и свисающими с макушки рассеченными, как у пальм, листьями. Некоторые виды саговниковых существуют и в современных тропических районах. Из беспозвоночных самыми распространенными были моллюски, среди которых преобладали аммониты (рис. 14), имевшие отдаленное сходство с современными наутилусами (или корабликами) и многокамерную раковину. Существовало много видов двустворчатых моллюсков. Значительный прогресс произошел в эволюции позвоночных. Хотя стегоцефалы были еще довольно обычны, преобладать стали пресмыкающиеся, среди которых появилось множество необычных групп (например, фитозавры, форма тела которых была, как у современных крокодилов, а челюсти узкие и длинные с острыми коническими зубами). В триасе впервые появились настоящие динозавры, эволюционно более развитые, чем их примитивные предки. Конечности у них были направлены вниз, а не в стороны (как у крокодилов), что позволяло им передвигаться подобно млекопитающим и поддерживать тело над землей. Динозавры передвигались на задних ногах, удерживая равновесие при помощи длинного хвоста (как кенгуру), и отличались небольшим ростом – от 30 см до 2,5 м. Некоторые пресмыкающиеся приспособились к жизни в морской среде, например ихтиозавры, туловище которых походило на акулье, а конечности трансформировались в нечто среднее между ластами и плавниками, и плезиозавры, туловище которых стало уплощенным, шея вытянулась, а конечности превратились в ласты. Обе эти группы животных стали более многочисленными в последующие этапы мезозойской эры.

Юрский период

получил свое название от гор Юра (в северо-западной Швейцарии), сложенных многослойной толщей известняков, глинистых сланцев и песчаников. В юре произошла одна из крупнейших морских трансгрессий в Западной Европе. Огромное эпиконтинентальное море распространялось на большей части Англии, Франции, Германии и проникало в некоторые западные районы европейской России. В Германии известны многочисленные выходы верхнеюрских лагунных мелкозернистых известняков, в которых были обнаружены необычные ископаемые. В Баварии, в знаменитом местечке Золенхофен, найдены остатки крылатых пресмыкающихся и оба из известных видов первых птиц.

Море Тетис простиралось от Атлантики через южную часть Пиренейского п-ова вдоль Средиземного моря и через Южную и Юго-Восточную Азию выходило к Тихому океану. Бóльшая часть северной Азии в этот период располагалась выше уровня моря, хотя эпиконтинентальные моря с севера проникали в Сибирь. Континентальные отложения юрского возраста известны в южной Сибири и северном Китае.
Небольшие эпиконтинентальные моря занимали ограниченные площади вдоль побережья западной Австралии. Во внутренних районах Австралии имеются выходы юрских континентальных отложений. Бóльшая часть Африки в юрский период располагалась выше уровня моря. Исключение составляла ее северная окраина, заливавшаяся морем Тетис. В Южной Америке вытянутое узкое море заполняло геосинклиналь, размещавшуюся примерно на месте современных Анд.

В Северной Америке юрские моря занимали весьма ограниченные территории на западе материка. Мощные толщи континентальных песчаников и кроющих глинистых сланцев накопились в районе плато Колорадо, особенно к северу и востоку от Большого каньона. Песчаники образовались из песков, слагавших пустынные дюнные ландшафты котловин. В результате процессов выветривания песчаники приобрели необычные формы (как, например, живописные остроконечные пики в национальном парке Зайон или национальный памятник Рейнбоу-Бридж, представляющий собой возвышающуюся на 94 м над дном каньона арку с пролетом 85 м; эти достопримечательности находятся в штате Юта). Отложения глинистых сланцев формации моррисон знамениты находками 69 видов ископаемых динозавров. Тонкодисперсные осадки в этом районе, вероятно, накапливались в условиях заболоченной низины.

Растительный мир юрского периода в общих чертах был сходен с существовавшим в триасе. Во флоре доминировали саговниковые и хвойные древесные породы. Впервые появились гинкговые – голосеменные широколиственные древесные растения с опадающей осенью листвой (вероятно, это связующее звено между голосеменными и покрытосеменными растениями). Единственный вид этого семейства – гинкго двулопастный – сохранился до настоящего времени и считается самым древним представителем древесных, поистине живым ископаемым.

Юрская фауна беспозвоночных весьма сходна с триасовой. Однако более многочисленными стали кораллы-рифостроители, широко распространились морские ежи и моллюски. Появились многие двустворчатые моллюски, родственные современным устрицам. Все еще были многочисленны аммониты.

Позвоночные были представлены преимущественно пресмыкающимися, поскольку стегоцефалы вымерли в конце триаса. Динозавры достигли кульминации своего развития. Такие травоядные формы, как апатозавры и диплодоки, стали передвигаться на четырех конечностях; многие имели длинные шею и хвост. Эти животные приобрели гигантские размеры (до 27 м в длину), а некоторые весили до 40 т. У отдельных представителей травоядных динозавров меньших размеров, например стегозавров, развился защитный панцирь, состоявший из пластин и шипов. У плотоядных динозавров, в частности аллозавров, сформировались крупные головы с мощными челюстями и острыми зубами, в длину они достигали 11 м и передвигались на двух конечностях. Другие группы пресмыкающихся тоже были весьма многочисленны. В юрских морях обитали плезиозавры и ихтиозавры. Впервые появились летающие пресмыкающиеся – птерозавры, у которых развились перепончатые крылья, как у летучих мышей, а масса уменьшилась за счет трубчатых костей.

Появление птиц в юре – важный этап в развитии животного мира. В лагунных известняках Золенхофена были обнаружены два птичьих скелета и отпечатки перьев. Однако эти примитивные птицы еще имели много черт, общих с пресмыкающимися, включая острые зубы конической формы и длинные хвосты.
Юрский период завершился интенсивной складчатостью, в результате которой на западе США сформировались горы Сьерра-Невада, которые простирались дальше на север в пределы современной западной Канады. Впоследствии южная часть этого складчатого пояса снова испытала поднятие, которое предопределило строение современных гор. На других материках проявления орогенеза в юре были незначительны.

Меловой период.

В это время накапливались мощные слоистые толщи мягкого слабо уплотненного белого известняка – мела, от которого произошло название периода. Впервые такие слои были изучены в обнажениях по берегам пролива Па-де-Кале близ Дувра (Великобритания) и Кале (Франция). В других частях света отложения соответствующего возраста тоже называют меловыми, хотя там встречаются и другие типы пород.
В меловой период морские трансгрессии охватывали значительные части Европы и Азии. В центральной Европе моря заливали два субширотных геосинклинальных прогиба. Один из них располагался в пределах юго-восточной Англии, северной Германии, Польши и западных районов России и на крайнем востоке достигал субмеридионального Уральского прогиба. Другая геосинклиналь, Тетис, сохраняла свое прежнее простирание в южной Европе и северной Африке и соединялась с южной оконечностью Уральского прогиба. Далее море Тетис продолжалось в Южной Азии и восточнее Индийского щита соединялось с Индийским океаном. За исключением северной и восточной окраин, территория Азии на протяжении всего мелового периода не заливалась морем, поэтому там широко распространены континентальные отложения этого времени. Мощные слои меловых известняков представлены во многих районах Западной Европы. В северных районах Африки, куда заходило море Тетис, накопились большие толщи песчаников. Пески пустыни Сахара образовались в основном за счет продуктов их разрушения. Австралия покрывалась меловыми эпиконтинентальными морями. В Южной Америке на протяжении большей части мелового периода Андский прогиб заливался морем. Восточнее его на значительной территории Бразилии отложились терригенные алевриты и пески с многочисленными остатками динозавров.

В Северной Америке окраинные моря занимали береговые равнины Атлантического океана и Мексиканского залива, где накапливались пески, глины и меловые известняки. Другое окраинное море располагалось на западном побережье материка в пределах Калифорнии и доходило до южных подножий возрожденных гор Сьерра-Невада. Однако последняя самая крупная морская трансгрессия охватила западные районы центральной части Северной Америки. В это время сформировался обширный геосинклинальный прогиб Скалистых гор, и огромное море распространялось от Мексиканского залива через современные Великие равнины и Скалистые горы на север (западнее Канадского щита) вплоть до Северного Ледовитого океана. Во время этой трансгрессии была отложена мощная многослойная толща песчаников, известняков и глинистых сланцев.

В конце мелового периода происходил интенсивный орогенез в Южной и Северной Америке и Восточной Азии. В Южной Америке осадочные породы, накопившиеся в Андской геосинклинали за несколько периодов, были уплотнены и смяты в складки, что привело к образованию Анд. Аналогичным образом в Северной Америке на месте геосинклинали сформировались Скалистые горы. Во многих районах мира усилилась вулканическая деятельность. Лавовые потоки покрыли всю южную часть п-ова Индостан (таким образом сформировалось обширное плато Декан), а небольшие излияния лавы имели место в Аравии и Восточной Африке. Все материки испытали значительные поднятия, и произошла регрессия всех геосинклинальных, эпиконтинентальных и окраинных морей.

Меловой период ознаменовался несколькими крупными событиями в развитии органического мира. Появились первые цветковые растения. Их ископаемые остатки представлены листьями и древесиной пород, многие из которых растут и в настоящее время (например, ива, дуб, клен и вяз). Меловая фауна беспозвоночных в целом аналогична юрской. Среди позвоночных животных наступила кульминация видового разнообразия пресмыкающихся. Существовали три основные группы динозавров. Хищные с хорошо развитыми массивными задними конечностями были представлены тираннозаврами, которые в длину достигали 14 м, а в высоту – 5 м. Получила развитие группа двуногих травоядных динозавров (или траходонтов) с широкими уплощенными челюстями, напоминающими утиный клюв. Многочисленные скелеты этих животных встречаются в меловых континентальных отложениях Северной Америки. К третьей группе относятся рогатые динозавры с развитым костяным щитом, защищавшим голову и шею. Типичный представитель этой группы – трицератопс с коротким носовым и двумя длинными надглазными рогами.

В меловых морях обитали плезиозавры и ихтиозавры, появились морские ящерицы мозазавры с вытянутым туловищем и сравнительно небольшими ластовидными конечностями. Птерозавры (летающие ящеры) утратили зубы и лучше передвигались в воздушном пространстве, чем их юрские предки. У одного из видов птерозавров – птеранодона – размах крыльев достигал 8 м.

Известны два вида птиц мелового периода, сохранившие некоторые морфологические особенности рептилий, например размещенные в альвеолах зубы конической формы. Один из них – гесперорнис (ныряющая птица) – приспособился к жизни в море.

Хотя переходные формы, больше похожие на рептилий, чем на млекопитающих, известны с триаса и юры, впервые многочисленные остатки настоящих млекопитающих были обнаружены в континентальных верхнемеловых отложениях. Примитивные млекопитающие мелового периода отличались небольшими размерами и чем-то напоминали современных землероек.

Широко развитые на Земле процессы горообразования и тектонические поднятия материков в конце мелового периода привели к столь значительным изменениям природы и климата, что многие растения и животные вымерли. Из беспозвоночных исчезли господствовавшие в мезозойских морях аммониты, а из позвоночных – все динозавры, ихтиозавры, плезиозавры, мозазавры и птерозавры.

Кайнозойская эра,

охватывавшая последние 65 млн. лет, подразделяется на третичный (в России принято выделять два периода – палеогеновый и неогеновый) и четвертичный периоды. Хотя последний отличался малой продолжительностью (возрастные оценки его нижней границы колеблются от 1 до 2,8 млн. лет), он сыграл большое значение в истории Земли, поскольку с ним связаны неоднократные материковые оледенения и появление человека.

Третичный период.

В это время многие районы Европы, Азии и Северной Африки были покрыты мелководными эпиконтинентальными и глубоководными геосинклинальными морями. В начале этого периода (в неогене) море занимало юго-восточную Англию, северо-западную Францию и Бельгию и там накопилась мощная толща песков и глин. Все еще продолжало существовать море Тетис, простиравшееся от Атлантического до Индийского океана. Его воды заливали Пиренейский и Апеннинский полуострова, северные районы Африки, юго-западную Азию и север Индостана. В этом бассейне отлагались мощные горизонты известняков. Бóльшая часть северного Египта сложена нуммулитовыми известняками, которые использовались в качестве строительного материала при возведении пирамид.

В это время почти вся юго-восточная Азия была занята морскими бассейнами и небольшое эпиконтинентальное море распространялось на юго-востоке Австралии. Третичные морские бассейны покрывали северную и южную оконечности Южной Америки, а эпиконтинентальное море проникало на территорию восточной Колумбии, северной Венесуэлы и южной Патагонии. Мощные толщи континентальных песков и алевритов накапливались в бассейне Амазонки.

Окраинные моря располагались на месте современных Береговых равнин, прилегающих к Атлантическому океану и Мексиканскому заливу, а также вдоль западного побережья Северной Америки. Мощные толщи континентальных осадочных пород, образовавшихся в результате денудации возрожденных Скалистых гор, накапливались на Великих равнинах и в межгорных впадинах.

Во многих районах земного шара в середине третичного периода происходил активный орогенез. В Европе образовались Альпы, Карпаты и Кавказ. В Северной Америке на заключительных этапах третичного периода сформировались Береговые хребты (в пределах современных штатов Калифорния и Орегон) и Каскадные горы (в пределах Орегона и Вашингтона).

Третичный период ознаменовался существенным прогрессом в развитии органического мира. Современные растения возникли еще в меловом периоде. Большинство третичных беспозвоночных были непосредственно унаследованы от меловых форм. Многочисленнее стали современные костистые рыбы, уменьшились численность и видовое разнообразие земноводных и пресмыкающихся. Произошел скачок в развитии млекопитающих. От примитивных форм, похожих на землероек и впервые появившихся в меловом периоде, берут начало многие формы, относящиеся уже к началу третичного периода. Самые древние ископаемые остатки лошадей и слонов обнаружены в нижнетретичных породах. Появились плотоядные и парнокопытные животные.

Видовое разнообразие животных сильно возросло, однако многие из них вымерли уже к концу третичного периода, а другие (подобно некоторым мезозойским пресмыкающимся) вернулись к морскому образу жизни, как, например, китообразные и морские свиньи, у которых плавники представляют собой трансформированные конечности. Летучие мыши смогли летать благодаря перепонке, соединяющей их длинные пальцы. Динозавры, вымершие в конце мезозоя, уступили место млекопитающим, которые стали доминирующим классом животных на суше в начале третичного периода.

Четвертичный период

подразделяется на эоплейстоцен, плейстоцен и голоцен. Последний начался всего 10 000 лет назад. Современный рельеф и ландшафты Земли в основном оформились в четвертичный период.

Горообразование, которое происходило в конце третичного периода, предопределило значительное поднятие материков и регрессию морей. Четвертичный период ознаменовался существенным похолоданием климата и широким развитием покровного оледенения в Антарктиде, Гренландии, Европе и Северной Америке. В Европе центром оледенения был Балтийский щит, откуда ледниковый покров распространялся до южной Англии, средней Германии и центральных районов Восточной Европы. В Сибири покровное оледенение имело меньшие размеры, в основном ограничиваясь предгорными районами. В Северной Америке ледниковые покровы занимали громадную территорию, включая бóльшую часть Канады и северные районы США вплоть до южного Иллинойса. В Южном полушарии четвертичный ледниковый покров характерен не только для Антарктиды, но и для Патагонии. Кроме того, на всех материках было широко распространено горное оледенение.
В плейстоцене выделяют четыре основных этапа активизации оледенения, чередовавшиеся с межледниковьями, во время которых природные условия были близки современным или даже более теплыми. Последний ледниковый покров на территории Европы и Северной Америки достигал наибольших размеров 18–20 тыс. лет назад и окончательно растаял в начале голоцена.

В четвертичный период вымерли многие третичные формы животных и появились новые, приспособившиеся к более холодным условиям. Особо следует отметить мамонта и шерстистого носорога, которые населяли северные области в плейстоцене. В более южных районах Северного полушария встречались мастодонты, саблезубые тигры и др. Когда ледниковые покровы растаяли, представители плейстоценовой фауны вымерли и их место заняли современные животные. Первобытные люди, в частности неандертальцы, вероятно, существовали уже во время последнего межледниковья, но человек современного типа – человек разумный (Homo sapiens) – появился лишь в последнюю ледниковую эпоху плейстоцена, а в голоцене расселился по всему земному шару.

Литература:

Страхов Н.М. Типы литогенеза и их эволюция в истории Земли . М., 1965
Аллисон А., Палмер Д. Геология. Наука о вечно меняющейся Земле . М., 1984



Существовавшие в разное время геологической истории.

тектоническую обстановку и характер минувших , развитие земной коры, историю возникновения и развития - поднятий, прогибов, складок, разрывных нарушений и других тектонических элементов.

Историческая геология является одним из крупных разделов геологических наук, в котором в хронологическом порядке рассматривается геологическое прошлое Земли. Поскольку геологическим наблюдениям доступна пока земная кора, постольку рассмотрение разнообразных природных явлений и процессов распространяется на земную кору. Формирование Земной коры определяют многообразные факторы, из которых ведущими являются - время, физико-географические условия и тектоника. Поэтому для восстановления истории земной коры решаются следующие задачи:

Определение возраста горных пород.

Восстановление физико-географических условий земной поверхности прошлого.

Восстановление тектонических движений и различных тектонических структур

Определение строения и закономерностей развития земной коры

1.Включает изучение состава, места и времени образования пластов горных пород и их корреляцию. Ее решает раздел исторической геологии - стратиграфия.

2.Рассматривает - климат, рельеф, развитие древних морей, рек, озер и т.д. в прошлые геологические эпохи. Все эти вопросы рассматривает палеогеография.

3.Тектонические движения изменяют первичное залегание горных пород. Они происходят вследствие горизонтальных или вертикальных движений отдельных блоков земной коры. Определением времени, характера, величины тектонических движений занимается геотектоника. Тектонические движения сопровождаются проявлением магматической деятельности. Время и условия образования магматических пород восстанавливает петрология.

4. Решается на основе анализа и синтеза результатов решения первых трех задач.

Все основные задачи тесно связаны между собой и решаются параллельно с помощью различных методов.

Как наука историческая геология начала формироваться на рубеже 18-19 веков, когда У. Смит в Англии, а Ж. Кювье и А. Броньяр во Франции пришли к одинаковым выводам о последовательной смене слоев и находящихся в них остатков ископаемых организмов. На основе биостратиграфического метода были составлены первые стратиграфические колонки, разрезы, отражающие вертикальную последовательность осадочных пород. Открытие этого метода положило начало стратиграфическому этапу развития исторической геологии. В течение первой половины 19 века были установлены почти все основные подразделения стратиграфической шкалы, проведена систематизация геологического материала в хронологической последовательности, разработана стратиграфическая колонка для всей Европы. В этот период в геологии господствовала идея катастрофизма, которая связывала все изменения, происходящие на Земле (изменение залегания толщ, образование гор, вымирание одних видов организмов и появление новых и др.) с крупными катастрофами.

Идею катастроф сменяет учение об эволюции, которое все изменения на Земле рассматривает как результат очень медленных и длительных геологических процессов. Основоположниками учения являются Ж. Ламарк, Ч. Лайель, Ч. Дарвин.

К середине 19 в. относятся первые попытки провести реконструкцию физико-географических условий по отдельным геологическим эпохам для крупных участков суши. Эти работы, проведенные учеными Дж. Дана, В.О. Ковалевским и др., положили начало палеогеографическому этапу развития исторической геологии. Большую роль для становления палеогеографии имело введение понятия о фациях ученым А. Грессли в 1838 г. Сущность его заключается в том, что породы одного и того же возраста могут иметь разный состав, отражающий условия их образования.

Во второй половине 19 в. зарождается представление о геосинклиналях как протяженных прогибах, заполненных мощными толщами осадочных пород. А к концу века А.П. Карпинским закладываются основы учения о платформах.

Представление о платформах и геосинклиналях как главнейших элементах структуры Земной коры дает начало третьему «тектоническому» этапу развития исторической геологии. Оно впервые было изложено в трудах ученого Э. Ога «Геосинклинали и континентальные площади». В России понятие о геосинклиналях было введено Ф.Ю. Левинсон-Лессингом в начале 20 в.

Таким образом, мы видим, что до середины 20 в. историческая геология развивалась с преобладанием какого-то одного научного направления. На современном этапе историческая геология развивается по двум направлениям. Первое направление - это детальное изучение геологической истории Земли в области стратиграфии, палеогеографии и тектоники. При этом совершенствуются старые методы исследований и привлекаются новые, такие как: глубокое и сверхглубокое бурение, геофизические, палеомагнитные; космического зондирования, абсолютной геохронологии и т.д.

Второе направление - работы по созданию целостной картины геологической истории земной коры, выявлению закономерностей развития и установлению причинной зависимости между ними.

1. Метод ленточных глин - основан на явлении изменения состава осадков, которые отлагаются в спокойном водном бассейне при сезонном изменении климата. За 1 год образуется 2 слоя. В осенне-зимний сезон отлагается слой глинистых пород, а в весенне-летний образуется слой песчаных пород. Зная количество таких пар слоев, можно определить - сколько лет формировалась вся толща.

2.Методы ядерной геохронологии

Эти методы опираются на явление радиоактивного распада элементов. Скорость этого распада постоянна и не зависит от каких-либо условий, происходящих на Земле. При радиоактивном распаде происходит изменение массы радиоактивных изотопов и накопление продуктов распада - радиогенных стабильных изотопов. Зная период полураспада радиоактивного изотопа, можно определить возраст минерала его содержащего. Для этого нужно определить соотношение между содержанием радиоактивного вещества и продукта его распада в минерале.

В ядерной геохронологии основными являются:

Свинцовый метод - используется процесс распада 235U, 238U, 232Th на изотопы 207Pb и 206Pb, 208Pb. Используются минералы: монацит, ортит, циркон и уранинит. Период полураспада ~4,5 млрд. лет.

Калий-аргоновый - при распаде К изотопы 40К (11%) переходят в аргон 40Ar, а остальные в изотоп 40Ca. Поскольку К присутствует в породообразующих минералах (полевые шпаты, слюды, пироксены и амфиболы), метод широко применяется. Период полураспада ~1.3млрд. лет.

Рубидий-стронциевый - используется изотоп рубидия 87Rb с образованием изотопа стронция 87Sr (используемые минералы - слюды содержащие рубидий). Из-за большого периода полураспада (49.9 млрд. лет) применяется для наиболее древних пород земной коры.

Радиоуглеродный - применяется в археологии, антропологии и наиболее молодых отложений Земной коры. Радиоактивный изотоп углерода 14С образуется при реакции космических частиц с азотом 14N и накапливается в растениях. После их гибели происходит распад углерода 14С, и по скорости распада определяют время гибели организмов и возраст вмещающих пород (период полураспада 5.7тыс. лет).

К недостаткам всех этих методов относятся:

невысокая точность определений (погрешность в 3-5% дает отклонение в 10-15 млн. лет, что не позволяет разрабатывать дробную стратификацию).

искажение результатов из-за метаморфизма, когда образуется новый минерал, аналогичный минералу материнской породы. Например, серицит-мусковит.

Тем не менее, за ядерными методами большое будущее, поскольку все время усовершенствуется аппаратура, позволяющая получать более надежные результаты. Благодаря этим методам установлено, что возраст Земной коры превышает 4.6 млрд. лет, тогда как до применения этих методов он оценивался лишь в десятки и сотни млн. лет.

Относительная геохронология определяет возраст пород и последовательность их образования стратиграфическими методами, а раздел геологии, изучающий взаимоотношения горных пород во времени и пространстве называется стратиграфией (от лат. stratum-слой +греч. grapho).

биостратиграфические или палеонтологические,

не палеонтологические.

Палеонтологические методы (биостратиграфия)

В основе метода-определения видового состава ископаемых остатков древних организмов и представления об эволюционном развитии органического мира, согласно которого в древних отложениях находятся остатки простых организмов, а в более молодых - организмы сложного строения. Эта особенность используется для определения возраста пород.

Для геологов важным моментом является то, что эволюционные изменения в организмах и появление новых видов происходит в определенный промежуток времени. Границы эволюционных преобразований - это границы геологического времени накопления осадочных слоев и горизонтов.

Метод определения относительного возраста слоев с помощью руководящих ископаемых так и называется метод руководящих ископаемых. Согласно этому методу одновозрастными являются слои, в которых содержатся близкие руководящие формы. Этот метод стал первым палеонтологическим методом определения возраста пород. На его основе была разработана стратиграфия многих регионов.

Чтобы избежать ошибок, наряду с этим методом используется метод палеонтологических комплексов. В этом случае используется весь комплекс вымерших организмов, встреченный в исследуемой толще. При этом могут быть выделены:

1-ископаемые формы, жившие только в одном слое; 2-формы, впервые появившиеся в изучаемом слое и переходящие в вышележащий (проводится нижняя граница слоя); 3-формы, переходящие из нижнего слоя и закончившие свое существование в изучаемом слое (доживающие формы);4-формы, жившие в нижнем или верхнем слое, но не встреченные в изучаемом слое (верхняя и нижняя границы слоя).

Не палеонтологические методы

Основные из них подразделяются на:

литологические

структурно-тектонические

геофизические

Литологические методы разделения толщ опираются на различия отдельных слоев, составляющих изучаемую толщу по цвету, вещественному составу (минералого-петрографическому), текстурным особенностям. Среди слоев и пачек в разрезе находят такие, которые резко отличаются по этим свойствам. Такие слои и пачки легко определяются в соседних обнажениях и прослеживаются на большие расстояния. Их называют маркирующим горизонтом. Метод разделения осадочной толщи на отдельные пачки и слои называется метод маркирующих горизонтов. Для отдельных регионов или возрастных интервалов маркирующим горизонтом могут быть прослои известняка, кремнистых сланцев, конгломераты и т.п.

Минералого-петрографический метод применяется, когда отсутствует маркирующий горизонт и осадочная толща по литологическому составу достаточно однообразна, тогда для сопоставления в разрезе отдельных слоев и их относительного возраста опираются на минералого-петрографические особенности отдельных слоев. Например, в нескольких слоях песчаника установлены такие минералы как рутил, гранат, циркон и определили их % содержание. По количественному соотношению этих минералов разделяют толщу на отдельные слои или горизонты. Такую же операцию проводят в соседнем разрезе, а затем сопоставляют результаты между собой и проводят корреляцию слоев в разрезе. Метод трудоемкий - необходимо отобрать и проанализировать большое количество образцов. В тоже время метод применим для небольших площадей.

Структурно-тектонический метод - в его основе лежит представление о существования перерывов в осадконакоплении на крупных участках земной коры. Перерывы в осадконакоплении наступают тогда, когда участок морского бассейна, где накапливалась осадочная толща, становится приподнятым и на этот период здесь прекращается формирование осадков. В последующее геологическое время данный участок может вновь начать погружение, снова стать морским бассейном, в котором происходит накопление новых осадочных толщ. Граница между толщами представляет собой поверхность несогласия. По таким поверхностям проводят расчленение осадочной толщи на пачки и сопоставляют их в соседних разрезах. Толщи, заключенные между одинаковыми поверхностями несогласия рассматриваются как одновозрастные. В отличие от литологического метода структурно-тектонический метод используется для сопоставления крупных стратиграфических подразделений в толщах.

Частным случаем структурно-тектонического метода является метод ритмостратиграфии. В этом случае производят расчленение осадочного разреза на пачки, которые формировались в бассейне при чередовании погружения и поднятия поверхности осадконакопления, которое сопровождалось наступлением и отступлением моря. Такое чередование отразилось на осадочной толще как последовательная смена горизонтов глубоководных пород на мелководные и наоборот. Если такая последовательная смена горизонтов наблюдается в разрезе многократно, то каждую из них выделяют в ритм. И по таким ритмам сопоставляют стратиграфические разрезы в пределах одного бассейна осадконакопления. Этот метод широко используется для корреляции разрезов мощных угленосных толщ.

Процесс формирования магматических тел сопровождается их внедрением в осадочную толщу пород. Поэтому в основе определения их возраста лежит изучение взаимоотношений между магматическими и жильными телами и пачками осадочных пород, которые они пересекли, и возраст которых установлен.

Геофизические методы основаны на сравнении пород по физическим свойствам. По своей геологической сущности геофизические методы близки минералого-петрографическому методу, поскольку и в этом случае выделяются отдельные горизонты, сопоставляются их физические параметры и по ним проводится корреляция разрезов. Геофизические методы не носят самостоятельного характера, а применяются в комплексе с другими методами.

Рассмотренные методы абсолютной и относительной геохронологии позволили определить возраст и последовательность образования горных пород, а также установить периодичность геологических явлений и выделить этапы в длительной истории Земли. В каждый этап последовательно накапливались толщи пород, и это накопление происходило в определенный промежуток времени. Поэтому всякая геохронологическая классификация содержит двойную информацию и объединяет две шкалы - стратиграфическую и геохронологическую. Стратиграфическая шкала отражает последовательность накопления толщ, а геохронологическая шкала - соответствующий этому процессу период времени.

На основе большого количества данных по различным регионам и континентам была создана общая для земной коры Международная геохронологическая шкала, отражающая последовательность подразделений времени, в течение которых формировались определенные комплексы отложений и эволюцию органического мира.

В стратиграфии подразделения рассматриваются от крупных к мелким:

эонотема - группа - система - отдел -ярус. Им соответствуют

эон - эра - период - эпоха - век

Похожие публикации