Активные металлы. Электрохимический ряд напряжений металлов. Вытеснение металлов из солей другими металлами Положение металлов электрохимическом ряду напряжений

Разность потенциалов «вещество электрода – раствор» как раз и служит количествен­ной характеристикой способности вещества (как металлов, так и неметаллов) переходить в раствор в виде ионов, т.е. характери­ стикой ОВ способности иона и соответствующего ему вещества.

Такую разность потенциалов называют электродным потенциалом .

Однако прямых методов измерений такой разности потенциалов не существует, поэтому условились их определять по отношению к так называемому стандартному водородному электроду, потенци­ ал которого условно принят за ноль (часто его также называют электродом сравнения). Стандартный водородный электрод состоит из платиновой пластинки, погруженной в раствор кислоты с кон­ центрацией ионов Н + 1 моль/л и омываемой струей газообразного водорода при стандартных условиях .

Возникновение потенциала на стандартном водородном электроде можно представить себе следующим образом. Газообразный водород, адсорбируясь платиной, переходит в атомарное состояние:

H 2 2H .

Между атомарным водородом, образующимся на поверхности пластины, ионами водорода в растворе и платиной (электроны!) реализуется состояние динамического равновесия:

H Н + + е.

Суммарный процесс выражается уравнением:

Н 2 2Н + + 2е.

Платина не принимает участия в окислительно — восстанов ительном процессе, а является лишь носителем атомарного водорода.

Если пластинку некоторого металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25° С, и характеризует стандартный элек­тродный потенциал металла, обозначаемый обычно как Е 0 .

По отношению к системе Н 2 /2Н + некоторые вещества будут вести себя как окислители, другие - как восстановители. В настоящее время получены стандартные потенциалы практически всех металлов и многих неметаллов, которые характеризуют относительную способность восстановителей или окислителей к от­даче или захвату электронов.

Потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак “-“, а знаком “+” отмечены потенциалы электродов, являющихся окислителями.

Если расположить металлы в порядке воз­растания их стандартных электродных потенциалов, то образует­ся так называемый электрохимический ряд напряжений метал­лов :

Li , Rb , К, Ва, Sr , Са, N а, М g , А l , М n , Zn , С r , F е, С d , Со, N i , Sn , Р b , Н, Sb , В i , С u , Hg , А g , Р d , Р t , А u .

Ряд напряжений характеризует химические свойства металлов.

1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в ряду напряжений металлов после него. Исключениями являются лишь щелочные и щелочноземельные металлы, которые не будут восстанавливать ионы других металлов из растворов их солей. Это связано с тем, что в этих случаях с большей скоростью протекают реакции вза­имодействия металлов с водой.

3. Все металлы, имеющие отрицательный стандартный элек­тродный потенциал, т.е. находящиеся в ряду напряжений метал­лов левее водорода, способны вытеснять его из растворов кислот.

Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах, поскольку потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Именно поэтому электрохимический ряд начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией про­цесса гидратации ионов лития по сравнению с ионами других щелочных металлов.

Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

Так, все полуреакции окисления галогенид-ионов до свободных галогенов

2 Cl — — 2 e = С l 2 Е 0 = -1,36 В (1)

2 Br — -2е = В r 2 E 0 = -1,07 В (2)

2I — -2 е = I 2 E 0 = -0,54 В (3)

могут быть реализованы в стандартных условиях при использовании в качестве окислителя оксида свинца ( IV ) (Е 0 = 1,46 В) или перманганата калия (Е 0 = 1,52 В). При использовании дихромата калия ( E 0 = 1,35 В) удается осуществить только реакции (2) и (3). Наконец, использование в качестве окислителя азотной кислоты ( E 0 = 0,96 В) позволяет осуществить только полуреакцию с участием иодид-ионов (3).

Таким образом, количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

Металлы в химических реакциях всегда восстановители. Восстановительную активность металла отображает его положение в электрохимическом ряду напряжений.

На основании ряда можно сделать следующие выводы:

1. Чем левее стоит металл в этом ряду, тем более сильным восстановителем он является.

2. Каждый металл способен вытеснять из солей в растворе те металлы, которые стоят правее

2Fe + 3CuSO 4 → 3Cu + Fe 2 (SO 4) 3

3. Металлы, находящиеся в ряду напряжений левее водорода способны вытеснять его из кислот.

Zn + 2HCl → ZnCl 2 + H 2

4. Металлы, являющиеся самыми сильными восстановителями (щелочные и щелочноземельные) в любых водных растворах прежде сего реагируют с водой.

Восстановительная способность металла, определённая по электрохимическому ряду не всегда соответствует его положению в периодической системе т.к в ряду напряжений учитывается не только радиус атома, но и энергия отрыва электронов.

Альдегиды, их строение и свойства. Получение, применение муравьиного и уксусного альдегидов.

Альдегиды – это органические соединения, в состав молекулы которых входит карбонильная группа, соединённая с водородом и углеводородным радикалом.

Метаналь (муравьиный альдегид)

Физические свойства

Метаналь – газообразное вещество, водный раствор – формалинь

Химические свойства


Реактивом на альдегиды является Cu(OH) 2

Применение

Наибольшее применение имеют метаналь и этаналь. Большое количество метаналя используется для получения фенолформальдегидной смолы, которую получают при взаимодействии метаналя с фенолом. Эта смола необходима для производства различных пластмасс. Пластмассы изготовлены для из фенолформальдегидной смолы в сочетании с различными наполнителями, называются фенопластами. При растворении фенолформальдегидной смолы в ацетоне или спирту получают различные лаки. При взаимодействии метаналя с карбамидом CO(NH 2) 2 получают карбидную смолу, а из нее – аминопласты. Из этих пластмасс изготавливают микропористые материалы для нужд электротехники.Метаналь идёт так же на производство некоторых лекарственных веществ и красителей. Широко применяется водный раствор, содержащий в массовых долях 40% метаналя. Он называетсяформалином. Его использование основано на свойстве свёртывать белок.



Получение

Альдегиды получают окислением алканов и спиртов. Этаналь получают гидротациейэтина и окислением этена.

Билет №12

Высшие оксиды химических элементов третьего периода. Закономерности в измерении их свойств в связи с положением химических элементов в периодической системе. Характерные химические свойства оксидов: основных, амфотерных, кислотных.

Оксиды – это сложные вещества, состоящие из двух химических элементов, один из которых является кислород со степенью окисления «-2»

К оксидам третьего периода относятся:
Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , SO 3 , Cl 2 O 7 .

С увеличением степени окисления элементов, увеличиваются кислотные свойства оксидов.

Na 2 O, MgO – основные оксиды

Al 2 O 3 – амфотерный оксид

SiO 2 , P 2 O 5 , SO 3 , Cl 2 O 7 – кислотные оксиды.

Основные оксиды реагируют с кислотами с образованием соли и воды.

MgO + 2CH 3 COOH → (CH 3 COO) 2 Hg + H 2 O

Оксиды щелочных и щелочноземельных металлов реагируют с водой с образованием щёлочи.

Na 2 O + HOH → 2NaOH

Основные оксиды реагируют с кислотными оксидами с образованием соли.
Na 2 O + SO 2 → Na 2 SO 3
Кислотные оксиды реагируют со щелочами с образованием соли и воды

2NaOH + SO 3 → Na 2 SO 4 + H 2 O

Реагирует с водой, с образованием кислоты

SO 3 + H 2 O → H 2 SO 4

Амфотерные оксиды реагируют с кислотами и щелочами

Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O

Со щёлочью

Al 2 O 3 + 2NaOH → 2NaAlO 2 + H 2 O

Жиры, их свойства и состав. Жиры в природе, превращение жиров в организме. Продукты технической переработки жиров, понятие о синтетических моющих средствах. Защита природы от загрязнения СМС.

Жиры – это сложные эфиры глицерина и карбоновых кислот.

Общая формула жиров:

Твёрдые жиры образованы преимущественно высщими предельными карбоновыми кислотами – стеариновой C 17 H 35 COOH, пальмитиновой C 15 H 31 COOH и некоторыми другими. Жидкие жиры образованы главным образом высшими непредельными карбоновыми кислотами – олеиновойC 17 H 33 COOH , ленолевойC 17 H 31 COOH

Жиры наряду с углеводородами и белками входят в состав организмов животных и растений. Они являются важной составной частью пищи человека и животных. При окислении жиров в организме выделяется энергия. Когда в органы пищеварения поступают жиры, то под влиянием ферментов они гидролизуются на глицерин и соответствующие кислоты.

Продукты гидролиза всасываются ворсинками кишечника, а затем синтезируется жир, но уже свойственный организм. Потоком крови жиры переносятся в другие органы и ткани организма, где накапливаются или снова гидролизуются и постепенно окисляются до оксида углерода (IV) и воды.

Физические свойства.

Животные жиры в большинстве случаев твёрдые вещества, но встречаются и жидкие (рыбий жир). Растительные жиры чаше всего жидкие вещества – масла; известны и твёрдые растительные жиры – кокосовое масло.

Химические свойства.

Жиры в животных организмах в присутствии ферментов гидролизуются. Кроме реакций с водой, жиры взаимодействуют со щелочами.

В состав растительных масел входят сложные эфиры непредельных карбоновых кислот, то их можно подвергнуть гидрированию. Они превращаются в предельные соединения
Пример: Из растительного масла в промышленности получают маргарин.

Применение.
Жиры в основном применяют в качестве пищевого продукта. Раньше жиры использовали для получения мыла
Синтетические моющие средства.

Синтетические моющие средства оказывают вредное действие на окружающую среду, т.к. они устойчивы и с трудом подвергаются разрушению.

Если из всего ряда стандартных электродных потенциалов выделить только те электродные процессы, которые отвечают общему уравнению

то получим ряд напряжений металлов. В этот ряд всегда помешают, кроме металлов, также водород, что позволяет видеть, какие металлы способны вытеснять водород из водных растворов кислот.

Таблица 19. Ряд напряжений металлов

Ряд напряжений для важнейших металлов приведен в табл. 19. Положение того или иного металла в ряду напряжений характеризует его способность к окислительно-восстановительным взаимодействиям в водных растворах при стандартных условиях. Ионы металлов являются окислителями, а металлы в виде простых веществ - восстановителями. При этом, чем дальше расположен металл в ряду напряжений, тем более сильным окислителем в водном растворе являются его ионы, и наоборот, чем ближе металл к началу ряда, тем более сильные восстановительные свойства проявляет простое вещество - металл.

Потенциал электродного процесса

в нейтральной среде равен В (см. стр. 273). Активные металлы начала ряда, имеющие потенциал, значительно более отрицательный, чем -0,41 В, вытесняют водород из воды. Магний вытесняет водород только из горячей воды. Металлы, расположенные между магнием и кадмием, обычно не вытесняют водород из воды. На поверхности этих металлов образуются оксидные пленки, обладающие защитным действием .

Металлы, расположенные между магнием и водородом, вытесняют водород из растворов кислот. При этом на поверхности некоторых металлов также образуются защитные пленки, тормозящие реакцию. Так, оксидная пленка на алюминии делает этот металл стойким не только в воде, но и в растворах некоторых кислот. Свинец не растворяется в серной кислоте при ее концентрации ниже , так как образующаяся при взаимодействии свинца с серной кислотой соль нерастворима и создает на поверхности металла защитную пленку. Явление глубокого торможения окисления металла, обусловленное наличием на его поверхности защитных оксидных или солевых пленок, называется пассивностью, а состояние металла при этом - пассивным состоянием.

Металлы способны вытеснять друг друга из растворов солей. Направление реакции определяется при этом их взаимным положением в ряду напряжений. Рассматривая конкретные случаи таких реакций, следует помнить, что активные металлы вытесняют водород не только из воды, но и из любого водного раствора. Поэтому взаимное вытеснение металлов из растворов их солей практически происходит лишь в случае металлов, расположенных в ряду после магния.

Вытеснение металлов из их соединений другими металлами впервые подробно изучал Бекетов. В результате своих работ он расположил металлы по их химической активности в вытеснительный ряд», являющийся прототипом ряда напряжений металлов.

Взаимное положение некоторых металлов в ряду напряжений и в периодической системе на первый взгляд не соответствует друг, другу. Например, согласно положению в периодической системе химическая активность калия должна быть больше, чем натрия, а натрия - больше, чем лития. В ряду же напряжений наиболее активным оказывается литий, а калий занимает среднее положение между литием и натрием. Цинк и медь по их положению в периодической системе должны иметь приблизительно равную химическую активность, но в ряду напряжений цинк расположен значительно раньше меди. Причина такого рода несоответствий состоит в следующем.

При сравнении металлов, занимающих то или иное положение в периодической системе, за меру их химической активности - восстановительной способности - принимается величина энергии ионизации свободных атомов. Действительно, при переходе, например, сверху вниз по главной подгруппе I группы периодической системы энергия ионизации атомов уменьшается, что связано с увеличением их радиусов (т. е. с большим удалением внешних электронов от ядра) и с возрастающим экранированием положительного заряда ядра промежуточными электронными слоями (см. § 31). Поэтому атомы калия проявляют большую химическую активность - обладают более сильными восстановительными свойствами, - чем атомы натрия, а атомы натрия - большую активность, чем атомы лития.

При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых: энергии атомизации - превращения кристалла металла в изолированные атомы, энергии ионизации свободных атомов металла и энергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов - отрыва от них валентных электронов - непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры иона, его заряда и радиуса.

Ионы лития и калия, имеющие одинаковый заряд, но различные радиусы, будут создавать около себя неодинаковые электрические поля. Поле, возникающее вблизи маленьких ионов лития, будет более сильным, чем поле около больших ионов калия. Отсюда ясно, что ионы лития будут гидратироваться с выделением большей энергии, чем ноны калия.

Таким образом, в ходе рассматриваемого превращения затрачивается энергия на атомизацию и ионизацию и выделяется энергия при гидратации. Чем меньше будет суммарная затрата энергии, тем легче будет осуществляться весь процесс и тем ближе к началу ряда напряжений будет располагаться данный металл. Но из трех слагаемых общего баланса энергии только одно - энергия ионизации-непосредственно определяется положением металла в периодической системе. Следовательно, нет оснований ожидать, что взаимное положение тех или иных металлов в ряду напряжений всегда будет соответствовать их положению в периодической системе. Так, для лития суммарная затрата энергии оказывается меньшей, чем для калия, в соответствии с чем литий стоит в ряду напряжений раньше калия.

Для меди и цинка затрата энергии на ионизацию свободных атомов и выигрыш ее при гидратации ионов близки. Но металлическая медь образует более прочную кристаллическую решетку, чем цинк, что видно из сопоставления температур плавления этих Металлов: цинк плавится при , а медь только при . Поэтому энергия, затрачиваемая на атомизацию этих металлов, существенно различна, вследствие чего суммарные энергетические затраты на весь процесс в случае меди гораздо больше, чем в случае цинка, что и объясняет взаимное положение этих металлов в ряду напряжений.

При переходе от воды к неводным растворителям взаимное положение металлов в ряду напряжений может изменяться. Причина этого лежит в том, что энергия сольватации ионов различных металлов по-разному изменяется при переходе от одного растворителя к другому.

В частности, ион меди весьма энергично сольватируется в некоторых органических растворителях; это приводит к тому, что в таких растворителях медь располагается в ряду напряжений до водорода и вытесняет его из растворов кислот.

Таким образом, в отличие от периодической системы элементов, ряд напряжений металлов не является отражением общей Закономерности, на основе которой можно давать разностороннюю Характеристику химических свойств металлов. Ряд напряжений Характеризует лишь окислительно-восстановительную способность Электрохимической системы «металл - ион металла» в строго определенных условиях: приведенные в нем величины относятся к водному раствору, температуре и единичной концентрации (активности) ионов металла.


В электрохимической ячейке (гальваническом элементе) электроны, остающиеся после образования ионов, удаляются через металлический провод и рекомбинируют с ионами другого вида. Т.е.заряд во внешней цепи переносится электронами, а внутри ячейки, через электролит, в который погружены металлические электроды, ионами. Таким образом получается замкнутая электрическая цепь.

Разность потенциалов, измеряемая в электрохимической ячейке, o бъясняется различием в способности каждого из металлов отдавать электроны. Каждый электрод имеет собственный потенциал, каждая система электрод-электролит представляет собой полуэлемент, а любые два полуэлемента образуют электрохимическую ячейку. Потенциал одного электрода называют потенциалом полуэлемента, он определят способность электрода отдавать электроны. Очевидно, что потенциал каждого полуэлемента не зависит от наличия другого полуэлемента и его потенциала. Потенциал полуэлемента определяется концентрацией ионов в электролите и температурой.

В качестве «нулевого» полуэлемента был выбран водород, т.е. считается, что для него при добавлении или удалении электрона с образованием иона никакой работы не совершается. «Нулевое» значение потенциала необходимо для понимания относительной способности каждого из двух полуэлементов ячейки отдавать и принимать электроны.

Потенциалы полуэлементов, измеряемые относительно водородного электрода, называются водородной шкалой. Если термодинамическая склонность отдавать электроны в одной половине электрохимической ячейки выше, чем в другой, то потенциал первою полуэлемента выше, чем потенциал второго. Под действием разности потенциалов будет происходить переток электронов. При сочетании двух металлов можно выяснить возникающую между ними разность потенциалов и направление потока электронов.

Электроположительный металл обладает более высокой способностью принимать электроны, поэтому он будет катодным или благородным. С другой стороны находятся электроотрицательные металлы, которые способны самопроизвольно отдавать электроны. Эти металлы являются реакционноспособными, а, следовательно, анодными:

- 0 +

Al Mn Zn Fe Sn Pb H 2 Cu Ag Au


Например, Cu отдает электроны легче Ag , но хуже Fe . В присутствии медного электрода ноны серебра начнут соединяться с электронами, приводя к образованию ионов меди и осаждению металлического серебра:

2 Ag + + Cu Cu 2+ + 2 Ag

Однако та же самая медь менее реакционноспособна, чем железо. При контакте металлического железа с нонами меди та будет осаждаться, а железо переходить в раствор:

Fe + Cu 2+ Fe 2+ + Cu .

Можно говорить, что медь является катодным металлом относительно железа и анодным - относительно серебра.

Стандартным электродным потенциалом считается потенциал полуэлемента из полностью отожженого чистого металла в качестве электрода в контакте с ионами при 25 0 С. В этих измерениях водородный электрод выступает в роли электрода сравнения. В случае двухвалентного металла можно записать реакцию, протекающую в соответствующей электро-химической ячейке:

М + 2Н + М 2+ + Н 2 .

Если упорядочить металлы по убыванию их стандартных электродных потенциалов, то получается так называемый электрохимический ряд напряжений металлов (табл. 1).

Таблица 1. Электрохимический ряд напряжений металлов

Равновесие металл-ионы (единичной активности)

Электродный потенциал относительно водородного электрода при 25°С, В (восстановительный потенциал)

Благородные

или катодные

Au-Au 3+

1,498

Pt-Pt 2 +

Pd-Pd 2 +

0,987

Ag-Ag +

0,799

Hg-Hg 2+

0,788

Cu-Cu 2+

0,337

Н 2 -Н +

Pb-Pb 2 +

0,126

Sn-Sn 2+

0,140

Ni-Ni 2+

0,236

Co-Co 2+

0,250

Cd-Cd 2+

0,403

Fe-Fe 2+

0,444

Cr-Cr 2+

0,744

Zn-Zn 2+

0,763

Активные
или анодные

Al-Al 2 +

1,662

Mg-Mg 2 +

2,363

Na-Na +

2,714

K-K +

2,925

Например, в гальваническом элементе медь-цинк возникает поток электронов от цинка к меди. Медный электрод является в этой схеме положительным полюсом, а цинковый - отрицательным. Более реакционноспособный цинк теряет электроны:

Zn Zn 2+ + 2е - ; E °=+0,763 В.

Медь же является менее реакционноспособной и принимает электроны от цинка:

Cu 2+ + 2е - Cu ; E °=+0,337 В.

Напряжение на соединяющем электроды металлическом проводе составит:

0,763 В + 0,337 В = 1,1 В.

Таблица 2. Стационарные потенциалы некоторых металлов и сплавов в морской воде по отношению к нормальному водородному электроду ( ГОСТ 9.005-72).

Металл

Стационарный потенциал, В

Металл

Стационарный потенциал, В

Магний

1,45

Никель (активное co стояние)

0,12

Магниевый сплав (6 % А l , 3 % Zn , 0,5 % Mn )

1,20

Медные сплавы ЛМцЖ-55 3-1

0,12

Цинк

0,80

Латунь (30 % Zn )

0,11

Алюминиевый сплав (10 % Mn )

0,74

Бронза (5-10 % Al )

0,10

Алюминиевый сплав (10 % Zn )

0,70

Томпак (5-10 % Zn )

0,08

Алюминиевый сплав К48-1

0,660

Медь

0,08

Алюминиевый сплав В48-4

0,650

Купроникель (30 % Ni )

0,02

Алюминиевый сплав АМг5

0,550

Бронза «Нева»

0,01

Алюминиевый сплав АМг61

0,540

Бронза Бр. АЖН 9-4-4

0,02

Алюминий

0,53

Нержавеющая сталь Х13 (пассивное состояние)

0,03

Кадмий

0,52

Никель (пассивное состояние)

0,05

Дюралюминий и алюминиевый сплав АМг6

0,50

Нержавеющая сталь Х17 (пассивное состояние)

0,10

Железо

0,50

Титан технический

0,10

Сталь 45Г17Ю3

0,47

Серебро

0,12

Сталь Ст4С

0,46

Нержавеющая сталь 1Х14НД

0,12

Сталь СХЛ4

0,45

Титан йодистый

0,15

Сталь типа АК и углеродистая сталь

0,40

Нержавеющая сталь Х18Н9 (пассивное состояние) и ОХ17Н7Ю

0,17

Серый чугун

0,36

Монель-металл

0,17

Нержавеющие стали Х13 и Х17 (активное состояние)

0,32

Нержавеющая сталь Х18Н12М3 (пассивное состояние)

0,20

Никельмедистый чугун (12-15 % Ni , 5-7 % Си)

0,30

Нержавеющая сталь Х18Н10Т

0,25

Свинец

0,30

Платина

0,40

Олово

0,25

Примечание . Указанные числовые значения потенциалов н порядок металлов в ряду могут изменяться в различной степени в зависимости от чистоты металлов, состава морской воды, степени аэрации и состояния поверхности металлов.

Разделы: Химия , Конкурс «Презентация к уроку»

Класс: 11

Презентация к уроку



















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели и задачи:

  • Обучающая: Рассмотрение химической активности металлов исходя из положения в периодической таблице Д.И. Менделеева и в электрохимическом ряду напряжения металлов.
  • Развивающая: Способствовать развитию слуховой памяти, умению сопоставлять информацию, логически мыслить и объяснять происходящие химические реакции.
  • Воспитательная: Формируем навык самостоятельной работы, умение аргументировано высказывать свое мнение и выслушивать одноклассников, воспитываем в ребятах чувство патриотизма и гордость за соотечественников.

Оборудование: ПК с медиапроектором, индивидуальные лаборатории с набором химических реактивов, модели кристаллических решеток металлов.

Тип урока : с применением технологии развития критического мышления.

Ход урока

I. Стадия вызов.

Актуализация знаний по теме, пробуждение познавательной активности.

Блеф-игра: «Верите ли Вы, что…». (Слайд 3)

  1. Металлы занимают верхний левый угол в ПСХЭ.
  2. В кристаллах атомы металла связаны металлической связью.
  3. Валентные электроны металлов крепко связаны с ядром.
  4. У металлов, стоящих в главных подгруппах (А), на внешнем уровне обычно 2 электрона.
  5. В группе сверху вниз происходит увеличение восстановительных свойств металлов.
  6. Чтобы оценить реакционную способность металла в растворах кислот и солей, достаточно посмотреть в электрохимический ряд напряжения металлов.
  7. Чтобы оценить реакционную способность металла в растворах кислот и солей, достаточно посмотреть в периодическую таблицу Д.И. Менделеева

Вопрос классу? Что обозначает запись? Ме 0 – ne —> Me +n (Слайд 4)

Ответ: Ме0 – является восстановителем, значит вступает во взаимодействие с окислителями. В качестве окислителей могут выступать:

  1. Простые вещества (+О 2 , Сl 2 , S…)
  2. Сложные вещества (Н 2 О, кислоты, растворы солей…)

II. Осмысление новой информации.

В качестве методического приема предлагается составление опорной схемы.

Вопрос классу? От каких факторов зависят восстановительные свойства металлов? (Слайд 5)

Ответ: От положения в периодической таблице Д.И.Менделеева или от положения в электрохимическом ряду напряжения металлов.

Учитель вводит понятия: химическая активность и электрохимическая активность .

Пред началом объяснения ребятам предлагается сравнить активность атомов К и Li поположению в периодической таблице Д.И. Менделеева и активность простых веществ, образованными данными элементами по положению в электрохимическом ряду напряжения металлов. (Слайд 6)

Возникает противоречие: В соответствии с положением щелочных металлов в ПСХЭ и согласно закономерностям изменения свойств элементов в подгруппе активность калия больше, чем лития. По положению в ряду напряжения наиболее активным является литий.

Новый материал. Учитель объясняет в чем отличие химической от электрохимической активности и объясняет, что электрохимический ряд напряжений отражает способность металла переходить в гидратированный ион, где мерой активности металла является энергия, которая складывается из трех слагаемых (энергии атомизации, энергии ионизации и энергии гидротации). Материал записываем в тетрадь. (Слайды 7-10)

Вместе записываем в тетрадь вывод: Чем меньше радиус иона, тем большее электрическое поле вокруг него создается, тем больше энергии выделяется при гидротации, следовательно более сильные восстановительные свойства у этого металла в реакциях.

Историческая справка: выступление ученика о создании Бекетовым вытеснительного ряда металлов. (Слайд 11)

Действие электрохимического ряда напряжения металлов ограничивается только реакциями металлов с растворами электролитов (кислот, солей).

Памятка:

  1. Уменьшаются восстановительные свойства металлов при реакциях в водных растворах в стандартных условиях (250°С, 1 атм.);
  2. Металл, стоящий левее, вытесняет металл, стоящий правее из их солей в растворе;
  3. Металлы, стоящие до водорода, вытесняют его из кислот в растворе (искл.: HNO3);
  4. Ме (до Al) + Н 2 О —> щелочь + Н 2
    Другие Ме (до Н 2) + Н 2 О —> оксид + Н 2 (жесткие условия)
    Ме (после Н 2) + Н 2 О —> не реагируют

(Слайд 12)

Ребятам раздаются памятки.

Практическая работа: «Взаимодействие металлов с растворами солей» (Слайд 13)

Осуществите переход:

  • CuSO 4 —> FeSO 4
  • CuSO 4 —> ZnSO 4

Демонстрация опыта взаимодействия меди и раствора нитрата ртути (II).

III. Рефлексия, размышление.

Повторяем: в каком случае пользуемся таблицей Менделеева, а в каком случае необходим ряд напряжение металлов. (Слайды 14-15) .

Возвращаемся к начальным вопросам урока. На экране высвечиваем вопрос 6 и 7. Анализируем какое высказывание не верное. На экране – ключ (проверка задания 1). (Слайд 16) .

Подводим итоги урока :

  • Что нового узнали?
  • В каком случае возможно пользоваться электрохимическим рядом напряжения металлов?

Домашнее задание : (Слайд 17)

  1. Повторить из курса физики понятие «ПОТЕНЦИАЛ»;
  2. Закончить уравнение реакции, написать уравнения электронного баланса: Сu + Hg(NO 3) 2 →
  3. Даны металлы (Fe, Mg, Pb, Cu) – предложите опыты, подтверждающие расположение данных металлов в электрохимическом ряду напряжения.

Оцениваем результаты за блеф-игру, работу у доски, устные ответы, сообщение, практическую работу.

Используемая литература:

  1. О.С. Габриэлян, Г.Г. Лысова, А.Г. Введенская «Настольная книга для учителя. Химия 11 класс, часть II» Издательство Дрофа.
  2. Н.Л. Глинка «Общая химия».
Похожие публикации