Величины электромагнитных колебаний. Аналогия между механическими и электромагнитными колебаниями — Гипермаркет знаний. Возможные применения колебаний

Разработка методики изучения темы «Электромагнитные колебания»

Колебательный контур. Превращения энергии при электромагнитных колебаниях.

Эти вопросы, являющиеся одними из самых важных в данной теме, рассматриваются на третьем уроке.

Сначала вводится понятие колебательного контура, делается соответствующая запись в тетради.

Далее, для выяснения причины возникновения электромагнитных колебаний, демонстрируется фрагмент, где показан процесс зарядки конденсатора. Обращается внимание учащихся на знаки зарядов пластин конденсатора.

После этого рассматриваются энергии магнитного и электрического полей, ученикам рассказывают о том, как изменяются эти энергии и полная энергия в контуре, объясняется механизм возникновения электромагнитных колебаний с использованием модели, ведется запись основных уравнений.

Очень важно обратить внимание учащихся на то, что такое представление тока в цепи (поток заряженных частиц) является условным, так как скорость электронов в проводнике очень мала. Такой способ представления выбран для облегчения понимания сути электромагнитных колебаний.

Далее внимание учащихся акцентируется на том, что они наблюдают процессы превращения энергии электрического поля в энергию магнитного и наоборот, а так как колебательный контур является идеальным (отсутствует сопротивление), то полная энергия электромагнитного поля остается неизменной. После этого дается понятие электромагнитных колебаний и оговаривается, что эти колебания являются свободными. Затем подводятся итоги и дается домашнее задание.

Аналогия между механическими и электромагнитными колебаниями.

Этот вопрос рассматривается на четвертом уроке изучения темы. Вначале для повторения и закрепления можно еще раз продемонстрировать динамическую модель идеального колебательного контура. Для объяснения сути и доказательства аналогии между электромагнитными колебаниями и колебаниями пружинного маятника используются динамическая колебательная модель ”Аналогия между механическими и электромагнитными колебаниями” и презентаций PowerPoint.

В качестве механической колебательной системы рассматривается пружинный маятник (колебания груза на пружине). Выявление связи между механическими и электрическими величинами при колебательных процессах ведется по традиционной методике.

Как это уже было сделано на прошлом занятии, необходимо еще раз напомнить учащимся об условности движения электронов по проводнику, после чего их внимание обращается на правый верхний угол экрана, где находится колебательная система “сообщающиеся сосуды”. Оговаривается, что каждая частица совершает колебания около положения равновесия, поэтому колебания жидкости в сообщающихся сосудах тоже могут служить аналогией электромагнитных колебаний.


Если в конце урока осталось время, то можно более подробно остановиться на демонстрационной модели, разобрать все основные моменты с применением вновь изученного материала.

Уравнение свободных гармонических колебаний в контуре.

Вначале урока демонстрируются динамические модели колебательного контура и аналогии механических и электромагнитных колебаний, повторяются понятия электромагнитных колебаний, колебательного контура, соответствие механических и электромагнитных величин при колебательных процессах.

Новый материал необходимо начать с того, что если колебательный контур идеальный, то его полная энергия с течением времени остается постоянной

т.е. ее производная по времени постоянна, а значит и производные по времени от энергий магнитного и электрического полей тоже постоянны. Затем, после ряда математических преобразований приходят к выводу, что уравнение электромагнитных колебаний аналогично уравнению колебаний пружинного маятника.

Ссылаясь на динамическую модель, учащимся напоминают, что заряд в конденсаторе меняется периодически, после чего ставится задача - выяснить, как зависят от времени заряд, сила тока в цепи и напряжение на конденсаторе.

Данные зависимости находятся по традиционной методике. После того, как найдено уравнение колебаний заряда конденсатора, учащимся демонстрируется картинка, на которой изображены графики зависимости заряда конденсатора и смещения груза от времени, представляющие собой косинусоиды.

По ходу выяснения уравнения колебаний заряда конденсатора вводятся понятия периода колебаний, циклической и собственной частот колебаний. Затем выводится формула Томсона.

Далее получают уравнения колебаний силы тока в цепи и напряжения на конденсаторе, после чего демонстрируется картинка с графиками зависимости трех электрических величин от времени. Внимание учащихся обращается на сдвиг фаз между колебаниями силы тока и зарядами его отсутствием между колебаниями напряжения и заряда.

После того, как выведены все три уравнения, вводится понятие затухающих колебаний и демонстрируется картинка, на которой изображены эти колебания.

На следующем уроке подводятся краткие итоги с повторением основных понятий и решаются задачи на нахождение периода, циклической и собственной частот колебаний, исследуются зависимости q(t), U(t), I(t), а так же различные качественные и графические задачи.

4. Методическая разработка трёх уроков

Приведенные ниже уроки разработаны в виде лекций, так как эта форма, по моему мнению, является наиболее производительной и оставляет в данном случае достаточно времени для работы с динамическими демонстрац ионными моделями. При желании эта форма может быть легко трансформирована в любую другую форму проведения урока.

Тема урока: Колебательный контур. Превращения энергии в колебательном контуре.

Объяснение нового материала.

Цель урока: объяснение понятия колебательного контура и сути электромагнитных колебаний с использованием динамической модели “Идеальный колебательный контур”.

Колебания могут происходить в системе, которая называется колебательным контуром, состоящим из конденсатора емкостью С и катушки индуктивностью L. Колебательный контур называется идеальным, если в нем нет потерь энергии на нагревание соединительных проводов и проводов катушки, т. е. пренебрегают сопротивлением R.

Давайте сделаем в тетрадях чертеж схематичного изображения колебательного контура.

Чтобы возникли электрические колебания в этом контуре, ему необходимо сообщить некоторый запас энергии, т.е. зарядить конденсатор. Когда конденсатор зарядится, то электрическое поле будет сосредоточено между его пластинами.

(Давайте проследим процесс зарядки конденсатора и остановим процесс, когда зарядка будет завершена).

Итак, конденсатор заряжен, его энергия равна

поэтому, следовательно,

Так как после зарядки конденсатор будет иметь максимальный заряд (обратите внимание на пластины конденсатора, на них расположены противоположные по знаку заряды), то при q=q max энергия электрического поля конденсатора будет максимальна и равна

В начальный момент времени вся энергия сосредоточена между пластинами конденсатора, сила тока в цепи равна нулю. (Давайте теперь замкнем на нашей модели конденсатор на катушку). При замыкании конденсатора на катушку он начинает разряжаться и в цепи возникнет ток, который, в свою очередь, создаст в катушке магнитное поле. Силовые линии этого магнитного поля направлены по правилу буравчика.

При разрядке конденсатора ток не сразу достигает своего максимального значения, а постепенно. Это происходит потому, что переменное магнитное поле порождает в катушке второе электрическое поле. Вследствие явления самоиндукции там возникает индукционный ток, который, согласно правилу Ленца, направлен в сторону, противоположную увеличению разрядного тока.

Когда разрядный ток достигает своего максимального значения энергия магнитного поля максимальна и равна:

а энергия конденсатора в этот момент равна нулю. Таким образом, через t=T/4 энергия электрического поля полностью перешла в энергию магнитного поля.

(Давайте понаблюдаем процесс разрядки конденсатора на динамической модели. Обращаю ваше внимание на то, что такой способ представления процессов зарядки и разрядки конденсатора в виде потока перебегающих частиц, является условным и выбран для удобства восприятия. Вы прекрасно знаете, что скорость движения электронов очень мала (порядка нескольких сантиметров в секунду). Итак, вы видите, как, при уменьшении заряда на конденсаторе изменяется сила тока в цепи, как изменяются энергии магнитного и электрического полей, какая между этими изменениями существует связь. Так как контур является идеальным, то потерь энергии нет, поэтому общая энергия контура остается постоянной).

С началом перезарядки конденсатора разрядный ток будет уменьшаться до нуля не сразу, а постепенно. Это происходит опять же из-за возникновения противо э. д. с. и индукционного тока противоположной направленности. Этот ток противодействует уменьшению разрядного тока, как ранее противодействовал его увеличению. Сейчас он будет поддерживать основной ток. Энергия магнитного поля будет уменьшаться, энергия электрического - увеличиваться, конденсатор будет перезаряжаться.

Таким образом, полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей

Колебания, при которых происходит периодическое превращение энергии электрического поля конденсатора в энергию магнитного поля катушки, называются ЭЛЕКТРОМАГНИТНЫМИ колебаниями. Так как эти колебания происходят за счет первоначального запаса энергии и без внешних воздействий, то они являются СВОБОДНЫМИ.

Тема урока: Аналогия между механическими и электромагнитными колебаниями.

Объяснение нового материала.

Цель урока: объяснение сути и доказательство аналогии между электромагнитными колебаниями и колебаниями пружинного маятника с использованием динамической колебательной модели ”Аналогия между механическими и электромагнитными колебаниями” и презентаций PowerPoint.

Материал для повторения:

понятие колебательного контура;

понятие идеального колебательного контура;

условия возникновения колебаний в к/к;

понятия магнитного и электрического полей;

колебания как процесс периодического изменения энергий;

энергия контура в произвольный момент времени;

понятие (свободных) электромагнитных колебаний.

(Для повторения и закрепления учащимся еще раз демонстрируется динамическая модель идеального колебательного контура).

На этом уроке мы рассмотрим аналогию между механическими и электромагнитными колебаниями. В качестве механической колебательной системы будем рассматривать пружинный маятник.

(На экране вы видите динамическую модель, которая демонстрирует аналогию между механическими и электромагнитными колебаниями. Она поможет нам разобраться в колебательных процессах, как в механической системе, так и в электромагнитной).

Итак, в пружинном маятнике упругодеформированная пружина сообщает скорость прикрепленному к ней грузу. Деформированная пружина обладает потенциальной энергией упругодеформированного тела

движущийся груз обладает кинетической энергией

Превращение потенциальной энергии пружины в кинетическую энергию колеблющегося тела является механической аналогией превращения энергии электрического поля конденсатора в энергию магнитного поля катушки. При этом аналогом механической потенциальной энергии пружины является энергия электрического поля конденсатора, а аналогом механической кинетической энергии груза является энергия магнитного поля, которая связана с движением зарядов. Зарядке конденсатора от батареи соответствует сообщение пружине потенциальной энергии (например, смещение рукой).

Давайте сопоставим формулы и выведем общие закономерности для электромагнитных и механических колебаний.

Из сопоставления формул следует, что аналогом индуктивности L является масса m, а аналогом смещения х служит заряд q, аналогом коэффициента k служит величина, обратная электроемкости, т. е. 1/С.

Моменту, кода конденсатор разрядится, а сила тока достигнет максимума, соответствует прохождение телом положения равновесия с максимальной скоростью (обратите внимание на экраны: там вы можете пронаблюдать это соответствие).


Как уже было сказано на прошлом занятии, движение электронов по проводнику является условным, ведь для них основным видом движения является колебательное движение около положения равновесия. Поэтому иногда еще электромагнитные колебания сравнивают с колебаниями воды в сообщающихся сосудах (посмотрите на экран, вы видите, что в правом верхнем углу находится именно такая колебательная система), где каждая частица совершает колебания около положения равновесия.

Итак, мы выяснили, что аналогией индуктивности является масса, а аналогией перемещения является заряд. Но вед вы прекрасно знаете, что изменение заряда в единицу времени - это не что иное, как сила тока, а изменение координаты в единицу времени - скорость, то есть q"= I, а x"= v. Таким образом, мы нашли еще одно соответствие между механическими и электрическими величинами.

Давайте составим таблицу, которая поможет нам систематизировать связи механических и электрических величин при колебательных процессах.

Таблица соответствия между механическими и электрическими величинами при колебательных процессах.


Тема урока: Уравнение свободных гармонических колебаний в контуре.

Объяснение нового материала.

Цель урока: вывод основного уравнения электромагнитных колебаний, законов изменения заряда и силы тока, получения формулы Томсона и выражения для собственной частоты колебания контура с использованием презентаций PowerPoint.

Материал для повторения:

понятие электромагнитных колебаний;

понятие энергии колебательного контура;

соответствие электрических величин механическим величинам при колебательных процессах.

(Для повторения и закрепления необходимо еще раз продемонстрировать модель аналогии механических и электромагнитных колебаний).

На прошлых уроках мы выяснили, что электромагнитные колебания, во-первых, являются свободными, во-вторых, представляют собой периодическое изменение энергий магнитного и электрического полей. Но кроме энергии при электромагнитных колебаниях меняется еще и заряд, а значит и сила тока в контуре и напряжение. На этом уроке мы должны выяснить законы, по которым меняются заряд, а значит сила тока и напряжение.

Итак, мы выяснили, что полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей: . Считаем, энергия не меняется со временем, то есть контур - идеальный. Значит производная полной энергии по времени равна нулю, следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

То есть.

Знак минус в этом выражении означает, что когда энергия магнитного поля возрастает, энергия электрического поля убывает и наоборот. А физический смысл этого выражения таков, что скорость изменения энергии магнитного поля равна по модулю и противоположна по направлению скорости изменения электрического поля.

Вычисляя производные, получим

Но, поэтому и - мы получили уравнение, описывающее свободные электромагнитные колебания в контуре. Если теперь мы заменим q на x, х""=а х на q"", k на 1/C, m на L, то получим уравнение

описывающее колебания груза на пружине. Таким образом, уравнение электромагнитных колебаний имеет такую же математическую форму, как уравнение колебаний пружинного маятника.

Как вы видели на демонстрационной модели, заряд на конденсаторе меняется периодически. Необходимо найти зависимость заряда от времени.

Из девятого класса вам знакомы периодические функции синус и косинус. Эти функции обладают следующим свойством: вторая производная синуса и косинуса пропорциональна самим функциям, взятым с противоположным знаком. Кроме этих двух, никакие другие функции этим свойством не обладают. А теперь вернемся к электрическому заряду. Можно смело утверждать, что электрический заряд, а значит и сила тока, при свободных колебаниях меняются с течением времени по закону косинуса или синуса, т.е. совершают гармонические колебания. Пружинный маятник также совершают гармонические колебания (ускорение пропорционально смещению, взятому со знаком минус).

Итак, чтобы найти явную зависимость заряда, силы тока и напряжения от времени, необходимо решить уравнение

учитывая гармонический характер изменения этих величин.

Если в качестве решения взять выражение типа q = q m cos t , то, при подстановке этого решения в исходное уравнениe, получим q""=-q m cos t=-q.

Поэтому, в качестве решения необходимо взять выражение вида

q=q m cosщ o t,

где q m - амплитуда колебаний заряда (модуль наибольшего значения колеблющейся величины),

щ o = - циклическая или круговая частота. Её физический смысл -

число колебаний за один период, т. е. за 2р с.

Период электромагнитных колебаний - промежуток времени, в течение которого ток в колебательном контуре и напряжение на пластинах конденсатора совершает одно полное колебание. Для гармонических колебаний Т=2р с (наименьший период косинуса).

Частота колебаний - число колебаний в единицу времени - определяется так: н = .

Частоту свободных колебаний называют собственной частотой колебательной системы.

Так как щ o = 2р н=2р/Т, то Т= .

Циклическую частоту мы определили как щ o = , значит для периода можно записать

Т= = - формула Томсона для периода электромагнитных колебаний.

Тогда выражение для собственной частоты колебаний примет вид

Нам осталось получить уравнения колебаний силы тока в цепи и напряжения на конденсаторе.

Так как, то при q = q m cos щ o t получим U=U m cosщ o t. Значит, напряжение тоже меняется по гармоническому закону. Найдем теперь закон, по которому меняется сила тока в цепи.

По определению, но q=q m cosщt, поэтому

где р/2 - сдвиг фаз между силой тока и зарядом (напряжением). Итак, мы выяснили, что сила тока при электромагнитных колебаниях тоже меняется по гармоническому закону.

Мы рассматривали идеальный колебательный контур, в котором нет потерь энергии и свободные колебания могут продолжаться бесконечно долго за счет энергии, однажды полученной от внешнего источника. В реальном контуре часть энергии идет на нагревание соединительных проводов и нагревание катушки. Поэтому свободные колебания в колебательном контуре являются затухающими.

Собственные незатухающие электромагнитные колебания

Электромагнитными колебаниями называютсяколебания электрических зарядов, токов и физических величин, характеризующих электрические и магнитные поля.

Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.

Простейшим типом периодических колебаний являются гармонические колебания. Гармонические колебания описываются уравнениями

Или .

Различают колебания зарядов, токов и полей, неразрывно связанных друг с другом, и колебания полей, существующих в отрыве от зарядов и токов. Первые имеют место в электрических цепях, вторые – в электромагнитных волнах.

Колебательным контуром называется электрическая цепь, в которой могут происходить электромагнитные колебания.

Колебательным контуром служит любая замкнутая электрическая цепь, состоящая из конденсатора емкостью С, катушки индуктивности с индуктивностью L и резистора сопротивлением R , в которой происходят электромагнитные колебания.

Простейший (идеальный) колебательный контур – это соединенные между собой конденсатор и катушка индуктивности. В таком контуре емкость сосредоточена только в конденсаторе, индуктивность – только в катушке и, кроме того, омическое сопротивление контура равно нулю, т.е. нет потерь энергии на тепло.

Чтобы в контуре возникли электромагнитные колебания, контур необходимо вывести из состояния равновесия. Для этого достаточно зарядить конденсатор или возбудить ток в катушке индуктивности и предоставить самому себе.

Сообщим одной из обкладок конденсатора заряд + q м. Из-за явления электростатической индукции вторая обкладка конденсатора зарядится отрицательным зарядом – q м. В конденсаторе возникнет электрическое поле с энергией .

Так как катушка индуктивности подсоединена к конденсатору, то напряжения на концах катушки будут равны напряжению между обкладками конденсатора. Это приведет к направленному движению свободных зарядов в контуре. Вследствие этого в электрической цепи контура наблюдается одновременно: нейтрализация зарядов на обкладках конденсатора (разрядка конденсатора) и упорядоченное движение зарядов в катушке индуктивности. Упорядоченное движение зарядов в цепи колебательного контура называется разрядным током.

Из-за явления самоиндукции разрядный ток начнет увеличиваться постепенно. Чем больше индуктивность катушки, тем медленнее растет разрядный ток.

Таким образом, разность потенциалов, приложенная к катушке, ускоряет движение зарядов, а эдс самоиндукции, напротив, тормозит их. Совместное действие разности потенциалов и эдс самоиндукции приводит к постепенному нарастанию разрядного тока . В тот момент, когда конденсатор полностью разрядится, ток в цепи достигнет максимального значения I м.



Этим завершается первая четверть периода колебательного процесса .

В процессе разрядки конденсатора разность потенциалов на его обкладках, заряд обкладок и напряженность электрического поля уменьшаются, при этом ток через катушку индуктивности и индукция магнитного поля возрастают. Энергия электрического поля конденсатора постепенно превращается в энергию магнитного поля катушки.

В момент завершения разрядки конденсатора энергия электрического поля будет равна нулю, а энергия магнитного поля достигает максимума

,

где L – индуктивность катушки, I m – максимальный ток в катушке.

Наличие в контуре конденсатора приводит к тому, что разрядный ток на его обкладках обрывается, заряды здесь тормозятся и накапливаются.

На той обкладке, по направлению к которой течет ток, накапливаются положительные заряды, на другой обкладке – отрицательные. В конденсаторе вновь возникает электростатическое поле, но теперь уже противоположного направления. Это поле тормозит движение зарядов катушки. Следовательно, ток и его магнитное поле начинают убывать. Уменьшение магнитного поля сопровождается возникновением эдс самоиндукции, которая препятствует уменьшению тока и поддерживает его первоначальное направление. Благодаря совместному действию вновь возникшей разности потенциалов и эдс самоиндукции ток уменьшается до нуля постепенно. Энергия магнитного поля снова переходит в энергию электрического поля. Этим завершается половина периода колебательного процесса. На третьей и четвертой частях описанные процессы повторяются, как на первой и второй частях периода, но в обратном направлении. Пройдя все эти четыре стадии, контур вернется в исходное состояние. Последующие циклы колебательного процесса будут в точности повторяться.

В колебательном контуре периодически изменяются следующие физические величины:

q - заряд на обкладках конденсатора;

U - разность потенциалов на конденсаторе и, следовательно, на концах катушки;

I - разрядный ток в катушке;

Напряженность электрического поля;

Индукция магнитного поля;

W E - энергия электрического поля;

W B - энергия магнитного поля.

Найдем зависимости q , I , , W E , W B от времени t .

Для нахождения закона изменения заряда q = q(t), необходимо составить для него дифференциальное уравнение и найти решение этого уравнения.

Так как контур идеальный (т.е. не излучает электромагнитных волн и не выделяет тепла), то его энергия, состоящая из суммы энергии магнитного поля W B и энергии электрического поля W E , остается неизменной в любой момент времени.

где I(t) и q(t) – мгновенные значения тока и заряда на обкладках конденсатора.

Обозначив , получим дифференциальное уравнение для заряда

Решение уравнения описывает изменение заряда на обкладках конденсатора со временем.

,

где - амплитудное значение заряда; - начальная фаза; - циклическая частота колебаний, - фаза колебаний.

Колебания любой физической величины, описывающей уравнением, называют собственными незатухающими колебания. Величину называют собственной циклической частотой колебаний. Период колебаний Т – наименьший промежуток времени, по истечении которого физическая величина принимает то же значение и имеет ту же скорость.

Период и частота собственных колебаний контура вычисляются по формулам:

Выражение называют формулой Томсона.

Изменения разности потенциалов (напряжения) между обкладками конденсатора со временем


, где - амплитуда напряжения.

Зависимость силы тока от времени определяется соотношением –

где - амплитуда тока.

Зависимость эдс самоиндукции от времени определяется соотношением –

где - амплитуда эдс самоиндукции.

Зависимость энергии электрического поля от времени определяется соотношением

где - амплитуда энергии электрического поля.

Зависимость энергии магнитного поля от времени определяется соотношением

где - амплитуда энергии магнитного поля.

В выражения для амплитуд всех изменяющихся величин входит амплитуда заряда q m . Эта величина, а также начальная фаза колебаний φ 0 определяются начальными условиями – зарядом конденсатора и током в контуре в начальный момент времени t = 0.

Зависимости
от времени t приведены на рис.

При этом, колебания заряда и разности потенциалов совершаются в одинаковых фазах, ток отстает по фазе от разности потенциалов на , частота колебаний энергий электрического и магнитного полей в два раза больше частоты колебаний всех других величин.

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ. СВОБОДНЫЕ И ВЫНУЖДЕННЫЕ ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ В КОЛЕБАТЕЛЬНОМ КОНТУРЕ.

  1. Электромагнитные колебания - взаимосвязанные колебания электрического и магнитного полей.

Электромагнитные колебания появляются в различных электрических цепях. При этом колеблются величина заряда, напряжение, сила тока, напряженность электрического поля, индукция магнитного поля и другие электродинамические величины.

Свободные электромагнитные колебания возникают в электромагнитной системе после выведения ее из состояния равновесия, например, сообщением конденсатору заряда или изменением тока в участке цепи.

Это затухающие колебания , так как сообщенная системе энергия расходуется на нагревание и другие процессы.

Вынужденные электромагнитные колебания - незатухающие колебания в цепи, вызванные внешней периодически изменяющейся синусоидальной ЭДС.

Электромагнитные колебания описываются теми же законами, что и механические, хотя физическая природа этих колебаний совершенно различна.

Электрические колебания - частный случай электромагнитных, когда рассматривают колебания только электрических величин. В этом случае говорят о переменных токе, напряжении, мощности и т.д.

  1. КОЛЕБАТЕЛЬНЫЙ КОНТУР

Колебательный контур - электрическая цепь, состоящая из последовательно соединенных конденсатора емкостью C, катушки индуктивностью L и резистора сопротивлением R. Идеальный контур – если сопротивлением можно пренебречь, то есть, только конденсатор С и идеальная катушка L.

Состояние устойчивого равновесия колебательного контура характеризуется минимальной энергией электрического поля (конденсатор не заряжен) и магнитного поля (ток через катушку отсутствует).

  1. ХАРАКТЕРИСТИКИ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ

Аналогия механических и электромагнитных колебаний

Характеристики:

Механические колебания

Электромагнитные колебания

Величины, выражающие свойства самой системы (параметры системы):

m- масса (кг)

k- жесткость пружины (Н/м)

L- индуктивность (Гн)

1/C- величина, обратная емкости (1/Ф)

Величины, характеризующие состояние системы:

Кинетическая энергия (Дж)

Потенциальная энергия (Дж)

х - смещение (м)

Электрическая энергия(Дж )

Магнитная энергия (Дж)

q - заряд конденсатора (Кл)

Величины, выражающие изменение состояния системы:

v = x"(t) скорость-быстрота смещения (м/с)

i = q"(t) сила тока – быстрота изменения заряда (А)

Другие характеристики:

T=1/ν

T=2π/ω

ω=2πν

T- период колебаний время одного полного колебания(с)

ν- частота-число колебаний за единицу времени (Гц)

ω - циклическая частота число колебаний за 2π секунд(Гц)

φ=ωt – фаза колебаний- показывает, какую часть от амплитудного значения принимает в данный момент колеблющаяся величина, т.е. фаза определяет состояние колеблющейся системы в любой момент времени t.

где q" - вторая производная заряда по времени.

Величина является циклической частотой. Такими же уравнениями описываются колебания тока, напряжения и других электрических и магнитных величин.

Одним из решений уравнения (1) является гармоническая функция

Это интегральное уравнение гармонических колебаний.

Период колебаний в контуре (формула Томсона):

Величина φ = ώt + φ 0 , стоящая под знаком синуса или косинуса, является фазой колебания.

Ток в цепи равен производной заряда по времени, его можно выразить

Напряжение на пластинах конденсатора изменяется по закону:

Где I max =ωq мак – амплитуда силы тока (А),

U max =q max /C - амплитуда напряжения (В)

Задание: для каждого состояния колебательного контура записать значения заряда на конденсаторе, тока в катушке, напряженности электрического поля, индукции магнитного поля, электрической и магнитной энергии.


Хотя механические и электромагнитные колебания имеют различную природу, между ними можно провести много аналогий. Например, рассмотрим электромагнитные колебания в колебательном контуре и колебание груза на пружине.

Колебание груза на пружине

При механических колебаниях тела на пружине, координата тела будет периодически изменяться. При этом будем меняться проекция скорости тела на ось Ох. В электромагнитных колебаниях с течение времени по периодическому закону будет изменяться заряд q конденсатора, и сила тока в цепи колебательного контура.

Величины будут иметь одинаковый характер изменения. Это происходит потому, что имеется аналогия между условиями, в которых возникают колебания. Когда мы отводим груз на пружине из положения равновесии, в пружине возникает сила упругости F упр., которая стремится вернуть груз обратно, в положение равновесия. Коэффициентом пропорциональности этой силы будет являться жесткость пружины k.

При разрядке конденсатора в цепи колебательного контура появляется ток. Разрядка обусловлена тем, что на пластинах конденсатора есть напряжение u. Это напряжение будет пропорционально заряду q любой из пластин. Коэффициентом пропорциональности будет служить величина 1/C, Где С – емкость конденсатора.

При движении груза на пружине, когда мы отпускаем его, скорость тела увеличивается постепенно, вследствие инертности. И после прекращения силы скорость тела не становится сразу равной нулю, она тоже постепенно уменьшается.

Колебательный контур

Так же и в колебательном контуре. Электрический ток в катушке под действием напряжения увеличивается не сразу, а постепенно, из-за явления самоиндукции. И когда напряжение перестает действовать, сила тока не становится сразу равной нулю.

То есть в колебательном контуре индуктивность катушки L будет аналогична массе тела m, при колебаниях груза на пружине. Следовательно, кинетическая энергия тела (m*V^2)/2, будет аналогична энергии магнитного поля тока (L*i^2)/2.

Когда мы выводим груз из положения равновесия, мы сообщаем уме некоторую потенциальную энергию (k*(Xm)^2)/2, где Хm - смещение от положения равновесия.

В колебательном контуре роль потенциальной энергии выполняет энергия заряда конденсатора q^2/(2*C). Можем сделать вывод, что жесткость пружины в механических колебаниях будет аналогична величине 1/С, где С- емкость конденсатора в электромагнитных колебаниях. А координата тела будет аналогична заряду конденсатора.

Рассмотрим подробнее процессы колебаний, на следующем рисунке.

картинка

(а) Сообщаем телу потенциальную энергию. По аналогии заряжаем конденсатор.

(б) Отпускаем шарик, потенциальная энергия начинает уменьшаться, возрастает скорость шарика. По аналогии, начинает уменьшаться заряд на обкладке конденсатора, в цепи появляется сила тока.

(в) Положение равновесия. Потенциальной энергии нет, скорость тела максимальна. Конденсатор разрядился, сила тока в цепи максимальна.

(д) Тело отклонилось в крайнее положении, скорость его стала равной нулю, а потенциальная энергия достигла своего максимума. Конденсатор снова зарядился, сила тока в цепи стала равняться нулю.

Тема урока .

Аналогия между механическими и электромагнитными колебаниями.

Цели урока:

Дидактическая провести полную аналогию между механическими и электромагнитными колебаниями, выявив сходство и различие между ними ;

Образовательная – показать универсальных характер теории механических и электромагнитных колебаний;

Развивающая – развивать когнитивные процессы учащихся, основываясь на применении научного метода познания: аналогичности и моделировании;

Воспитательная – продолжить формирование представлений о взаимосвязи явлений природы и единой физической картине мира, учить находить и воспринимать прекрасное в природе, искусстве и учебной деятельности.

Вид урока :

комбинированный урок

Форма работы:

индивидуальная, групповая

Методическое обеспечение :

компьютер, мультимедийный проектор, экран, опорный конспект, тексты самостоятельной работы.

Межпредметные связи :

физика

Ход урока

    Организационный момент.

На сегодняшнем уроке мы проведем аналогию между механическими и электромагнитными колебаниями.

I I. Проверка домашнего задания.

Физический диктант.

    Из чего состоит колебательный контур?

    Понятие (свободных) электромагнитных колебаний.

3. Что необходимо сделать, чтобы в колебательном контуре возникли электромагнитные колебания?

4. Какой прибор позволяет обнаружить наличие колебаний в колебательном контуре?

    Актуализация знаний.

Ребята, запишите тему урока.

А сейчас мы проведем сравнительные характеристики двух видов колебаний.

Фронтальная работа с классом (проверка осуществляется через проектор).

(Слайд 1)

Вопрос учащимся: Что общего в определениях механических и электромагнитных колебаний и чем они отличаются!

Общее: в обоих видах колебаний происходит периодическое изменение физических величин.

Отличие: В механических колебаниях - это координата, скорость и ускорение В электромагнитных - заряд, сила тока и напряжение.

(Слайд 2)

Вопрос учащимся: Что общего в способах получения и чем они отличаются?

Общее: и механические, и электромагнитные колебания можно получить с помощью колебательных систем

Отличие: различные колебательные системы - у механических - это маятники, а у электромагнитных - колебательный контур.

(Слайд3)

Вопрос учащимся : « Что общего в показанных демонстрациях и их отличие?»

Общее: колебательная система выводилась из положения равновесия и получала запас энергии.

Отличие: маятники получали запас потенциальной энергии, а колебательная система - запас энергии электрического поля конденсатора.

Вопрос учащимся : Почему электромагнитные колебания нельзя наблюдать также как и механические (визуально)

Ответ: так как мы не можем увидеть, как происходит зарядка и перезарядка конденсатора, как течёт ток в контуре и в каком направлении, как меняется напряжение между пластинами конденсатора

Самостоятельная работа

(Слайд3)

Учащимся предлагается самостоятельно заполнить таблицу Соответствиея между механическими и электрическими величинами при колебательных процессах

III . Закрепление материала

Закрепляющий тест по данной теме:

1. Период свободных колебаний нитяного маятника зависит от...
А. От массы груза. Б. От длины нити. В. От частоты колебаний.

2. Максимальное отклонение тела от положения равновесия называется...
А. Амплитуда. Б. Cмещение. В. Период.

3. Период колебаний равен 2 мс. Частота этих колебаний равна А. 0.5 Гц Б. 20 Гц В. 500 Гц

(Ответ: Дано:
мс с Найти:
Решение:
Гц
Ответ: 20 Гц)

4. Частота колебаний 2 кГц. Период этих колебаний равен
А. 0.5 с Б. 500 мкс В. 2 с (Ответ: T= 1\n= 1\2000Гц = 0,0005)

5. Конденсатор колебательного контура заряжен так, что заряд на одной из обкладок конденсатора составляет +q . Через какое минимальное время после замыкания конденсатора на катушку заряд на той же обкладке конденсатора станет равным – q, если период свободных колебаний в контуре Т?
А. Т/2 Б. Т В. Т/4

(Ответ: А) Т/2 потому что еще через T/2 заряд снова станет +q)

6. Сколько полных колебаний совершит материальная точка за 5 с, если частота колебаний 440 Гц?
А. 2200 Б. 220 В. 88

(Ответ: U=n\t отсюда следует n=U*t ; n=5 c * 440 Гц=2200 колебаний)

7. В колебательном контуре, состоящем из катушки, конденсатора и ключа, конденсатор заряжен, ключ разомкнут. Через какое время после замыкания ключа ток в катушке возрастёт до максимального значения, если период свободных колебаний в контуре равен Т?
А. Т/4 Б. Т/2 В. Т

(Ответ: Ответ T/4 при t=0 емкость заряжена, ток равен нулю через Т/4 емкость разряжена, ток максимальный через Т/2 емкость заряжена противоположным напряжением, ток равен нулю через 3Т/4 емкость разряжена, ток максимальный, противоположный тому что при Т/4 через Т емкость заряжена, ток равен нулю (процесс повторяется)

8. Колебательный контур состоит
А. конденсатора и резистора Б. конденсатора и лампы В. конденсатора и катушки индуктивности

IV . Домашнее задание

Г. Я. Мякишев §18, стр.77-79

Ответить на вопросы:

1. В какой системе возникают электромагнитные колебания?

2. Как осуществляется превращение энергий в контуре?

3. Записать формулу энергии в любой момент времени.

4. Объяснить аналогию между механическими и электромагнитными колебаниями.

V . Рефлексия

сегодня я узнал (а)…

было интересно узнать…

было трудно выполнять…

теперь я могу решать..

я научился (лась)…

у меня получилось…

я смог(ла)…

я попробую сам(а)…

(Слайд1)

(Слайд2)

(Слайд3)

(Слайд4)

Похожие публикации